zoukankan      html  css  js  c++  java
  • POJ 2253 Frogger

    Frogger

    Time Limit: 1000ms
    Memory Limit: 65536KB
    This problem will be judged on PKU. Original ID: 2253
    64-bit integer IO format: %lld      Java class name: Main
     
    Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists' sunscreen, he wants to avoid swimming and instead reach her by jumping. 
    Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps. 
    To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence. 
    The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones. 

    You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone. 
     

    Input

    The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy's stone, stone #2 is Fiona's stone, the other n-2 stones are unoccupied. There's a blank line following each test case. Input is terminated by a value of zero (0) for n.
     

    Output

    For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one.
     

    Sample Input

    2
    0 0
    3 4
    
    3
    17 4
    19 4
    18 5
    
    0
    

    Sample Output

    Scenario #1
    Frog Distance = 5.000
    
    Scenario #2
    Frog Distance = 1.414
    

    Source

     
    解题:最小生成树算法 以及 dijkstra Floyd都可以啊。
     
    先上Prim算法版
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 #include <algorithm>
     6 #include <climits>
     7 #include <vector>
     8 #include <queue>
     9 #include <cstdlib>
    10 #include <string>
    11 #include <set>
    12 #include <stack>
    13 #define LL long long
    14 #define pii pair<int,int>
    15 #define INF 0x3f3f3f3f
    16 using namespace std;
    17 const int maxn = 210;
    18 double dis[maxn][maxn],d[maxn];
    19 bool vis[maxn];
    20 vector<int>g[maxn];
    21 int n,x[maxn],y[maxn],p[maxn];
    22 void prim() {
    23     for(int i = 0; i <= n; ++i) {
    24         vis[i] = false;
    25         d[i] = INF;
    26         p[i] = -1;
    27     }
    28     d[1] = 0;
    29     while(true) {
    30         double minV = INF;
    31         int index = -1;
    32         for(int i = 1; i <= n; ++i)
    33             if(!vis[i] && d[i] < minV) minV = d[index = i];
    34         if(index == -1 || minV >= INF) break;
    35         if(p[index] > -1) {
    36             g[p[index]].push_back(index);
    37             g[index].push_back(p[index]);
    38         }
    39         vis[index] = true;
    40         for(int i = 1; i <= n; ++i)
    41             if(!vis[i] && d[i] > dis[index][i]) {
    42                 d[i] = dis[index][i];
    43                 p[i] = index;
    44             }
    45     }
    46 }
    47 double getDis(int i,int j) {
    48     double tmp = (x[i] - x[j])*(x[i] - x[j]);
    49     tmp += (y[i] - y[j])*(y[i] - y[j]);
    50     return sqrt(tmp);
    51 }
    52 double ans;
    53 bool dfs(int u,int fa,double maxV) {
    54     if(u == 2) {
    55         ans = maxV;
    56         return true;
    57     }
    58     for(int i = g[u].size()-1; i >= 0; --i) {
    59         if(g[u][i] == fa) continue;
    60         if(dfs(g[u][i],u,max(maxV,dis[u][g[u][i]]))) return true;
    61     }
    62     return false;
    63 }
    64 int main() {
    65     int cs = 1;
    66     while(scanf("%d",&n),n) {
    67         for(int i = 0; i <= n; ++i) g[i].clear();
    68         for(int i = 1; i <= n; ++i)
    69             scanf("%d %d",x+i,y+i);
    70         for(int i = 1; i <= n; ++i)
    71             for(int j = 1; j <= n; ++j)
    72                 dis[i][j] = getDis(i,j);
    73         prim();
    74         ans = 0;
    75         dfs(1,-1,0);
    76         printf("Scenario #%d
    Frog Distance = %.3f
    
    ",cs++,ans);
    77     }
    78     return 0;
    79 }
    View Code

    Dijkstra版

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 #include <algorithm>
     6 #include <climits>
     7 #include <vector>
     8 #include <queue>
     9 #include <cstdlib>
    10 #include <string>
    11 #include <set>
    12 #include <stack>
    13 #define LL long long
    14 #define pii pair<int,int>
    15 #define INF 0x3f3f3f3f
    16 using namespace std;
    17 const int maxn = 210;
    18 double dis[maxn][maxn],d[maxn];
    19 int n,x[maxn],y[maxn];
    20 bool vis[maxn];
    21 double getDis(int i,int j) {
    22     double tmp = (x[i] - x[j])*(x[i] - x[j]);
    23     tmp += (y[i] - y[j])*(y[i] - y[j]);
    24     return sqrt(tmp);
    25 }
    26 void dijkstra(){
    27     for(int i = 1; i <= n; ++i){
    28         vis[i] = false;
    29         d[i] = INF;
    30     }
    31     d[1] = 0;
    32     while(true){
    33         double minV = INF;
    34         int index = -1;
    35         for(int i = 1; i <= n; ++i)
    36             if(!vis[i] && d[i] < minV) minV = d[index = i];
    37         if(index == -1 || minV >= INF) break;
    38         vis[index] = true;
    39         for(int i = 1; i <= n; ++i)
    40             if(!vis[i] && d[i] > max(d[index],dis[index][i]))
    41                 d[i] = max(d[index],dis[index][i]);
    42     }
    43 }
    44 int main() {
    45     int cs = 1;
    46     while(scanf("%d",&n),n) {
    47         for(int i = 1; i <= n; ++i)
    48             scanf("%d %d",x+i,y+i);
    49         for(int i = 1; i <= n; ++i)
    50             for(int j = 1; j <= n; ++j)
    51                 dis[i][j] = getDis(i,j);
    52         dijkstra();
    53         printf("Scenario #%d
    Frog Distance = %.3f
    
    ",cs++,d[2]);
    54     }
    55     return 0;
    56 }
    View Code

    Floyd版

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 #include <algorithm>
     6 #include <climits>
     7 #include <vector>
     8 #include <queue>
     9 #include <cstdlib>
    10 #include <string>
    11 #include <set>
    12 #include <stack>
    13 #define LL long long
    14 #define pii pair<int,int>
    15 #define INF 0x3f3f3f3f
    16 using namespace std;
    17 const int maxn = 210;
    18 double dis[maxn][maxn];
    19 int n,x[maxn],y[maxn];
    20 double getDis(int i,int j) {
    21     if(i == j) return 0;
    22     double tmp = (x[i] - x[j])*(x[i] - x[j]);
    23     tmp += (y[i] - y[j])*(y[i] - y[j]);
    24     return sqrt(tmp);
    25 }
    26 void Floyd(){
    27     for(int k = 1; k <= n; ++k){
    28         for(int i = 1; i <= n; ++i){
    29             for(int j = 1; j <= n; ++j)
    30                 dis[i][j] = min(dis[i][j],max(dis[i][k],dis[k][j]));
    31         }
    32     }
    33 }
    34 int main() {
    35     int cs = 1;
    36     while(scanf("%d",&n),n) {
    37         for(int i = 1; i <= n; ++i)
    38             scanf("%d %d",x+i,y+i);
    39         for(int i = 1; i <= n; ++i)
    40             for(int j = 1; j <= n; ++j)
    41                 dis[i][j] = getDis(i,j);
    42         Floyd();
    43         printf("Scenario #%d
    Frog Distance = %.3f
    
    ",cs++,dis[1][2]);
    44     }
    45     return 0;
    46 }
    View Code
  • 相关阅读:
    750. Number Of Corner Rectangles
    [Project Euler] 3. Largest Prime factor
    [Project Euler] 2. Even Fibonacci numbers
    Jmeter学习笔记3-参数化
    SQL多表连接查询补充
    Jmeter学习笔记2-原件作用域与执行顺序
    Jmeter学习笔记1-实践介绍
    运用badboy录制jmeter脚本
    【SQL提数】左连接使用
    【功能测试技巧2】dubbo引起的数据精度的思考
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4066471.html
Copyright © 2011-2022 走看看