Task Schedule
Time Limit: 1000ms
Memory Limit: 32768KB
This problem will be judged on HDU. Original ID: 357264-bit integer IO format: %I64d Java class name: Main
Our geometry princess XMM has stoped her study in computational geometry to concentrate on her newly opened factory. Her factory has introduced M new machines in order to process the coming N tasks. For the i-th task, the factory has to start processing it at or after day Si, process it for Pi days, and finish the task before or at day Ei. A machine can only work on one task at a time, and each task can be processed by at most one machine at a time. However, a task can be interrupted and processed on different machines on different days.
Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help.
Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help.
Input
On the first line comes an integer T(T<=20), indicating the number of test cases.
You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible schedule every task that can be finished will be done before or at its end day.
You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible schedule every task that can be finished will be done before or at its end day.
Output
For each test case, print “Case x: ” first, where x is the case number. If there exists a feasible schedule to finish all the tasks, print “Yes”, otherwise print “No”.
Print a blank line after each test case.
Print a blank line after each test case.
Sample Input
2 4 3 1 3 5 1 1 4 2 3 7 3 5 9 2 2 2 1 3 1 2 2
Sample Output
Case 1: Yes Case 2: Yes
Source
解题:最大流。。建图确实有点。。。一下子想不到。。。还以为要拆边。。。
好吧 源点到每个任务建边容量为pi,每个任务到期限内的各天连容量为1的边,每天到汇点连容量为m的边。。。
现在很好理解了,如果满流即存在可行方案。。
每天最多m台机器同时工作。。。每个任务需要工作pi天。。。
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cmath> 5 #include <algorithm> 6 #include <climits> 7 #include <vector> 8 #include <queue> 9 #include <cstdlib> 10 #include <string> 11 #include <set> 12 #include <stack> 13 #define LL long long 14 #define pii pair<int,int> 15 #define INF 0x3f3f3f3f 16 using namespace std; 17 const int maxn = 20000; 18 struct arc{ 19 int to,flow,next; 20 arc(int x = 0,int y = 0,int z = -1){ 21 to = x; 22 flow = y; 23 next = z; 24 } 25 }; 26 arc e[maxn*10]; 27 int head[maxn],d[maxn],cur[maxn]; 28 int tot,S,T,n,m; 29 void add(int u,int v,int flow){ 30 e[tot] = arc(v,flow,head[u]); 31 head[u] = tot++; 32 e[tot] = arc(u,0,head[v]); 33 head[v] = tot++; 34 } 35 bool bfs(){ 36 memset(d,-1,sizeof(d)); 37 queue<int>q; 38 d[T] = 1; 39 q.push(T); 40 while(!q.empty()){ 41 int u = q.front(); 42 q.pop(); 43 for(int i = head[u]; ~i; i = e[i].next){ 44 if(e[i^1].flow && d[e[i].to] == -1){ 45 d[e[i].to] = d[u] + 1; 46 q.push(e[i].to); 47 } 48 } 49 } 50 51 return d[S] > -1; 52 } 53 int dfs(int u,int low){ 54 if(u == T) return low; 55 int tmp = 0,a; 56 for(int &i = cur[u]; ~i; i = e[i].next){ 57 if(e[i].flow && d[e[i].to] + 1 == d[u]&&(a=dfs(e[i].to,min(e[i].flow,low)))){ 58 e[i].flow -= a; 59 e[i^1].flow += a; 60 tmp += a; 61 low -= a; 62 if(!low) break; 63 } 64 } 65 if(!tmp) d[u] = -1; 66 return tmp; 67 } 68 int dinic(){ 69 int ans = 0; 70 while(bfs()){ 71 memcpy(cur,head,sizeof(head)); 72 ans += dfs(S,INF); 73 } 74 return ans; 75 } 76 int main() { 77 int cs,pi,si,ei,cao = 1; 78 scanf("%d",&cs); 79 while(cs--){ 80 scanf("%d %d",&n,&m); 81 int mx = 0,sum = 0; 82 memset(head,-1,sizeof(head)); 83 S = tot = 0; 84 for(int i = 1; i <= n; ++i){ 85 scanf("%d %d %d",&pi,&si,&ei); 86 sum += pi; 87 for(int k = si; k <= ei; ++k) add(i,n+k,1); 88 add(S,i,pi); 89 mx = max(mx,ei); 90 } 91 T = n + mx + 1; 92 for(int i = n+1; i < T; ++i) add(i,T,m); 93 printf("Case %d: %s ",cao++,dinic() == sum?"Yes":"No"); 94 } 95 return 0; 96 }