zoukankan      html  css  js  c++  java
  • HDU 3572 Task Schedule

    Task Schedule

    Time Limit: 1000ms
    Memory Limit: 32768KB
    This problem will be judged on HDU. Original ID: 3572
    64-bit integer IO format: %I64d      Java class name: Main
     
    Our geometry princess XMM has stoped her study in computational geometry to concentrate on her newly opened factory. Her factory has introduced M new machines in order to process the coming N tasks. For the i-th task, the factory has to start processing it at or after day Si, process it for Pi days, and finish the task before or at day Ei. A machine can only work on one task at a time, and each task can be processed by at most one machine at a time. However, a task can be interrupted and processed on different machines on different days. 
    Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help.
     

    Input

    On the first line comes an integer T(T<=20), indicating the number of test cases.

    You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible schedule every task that can be finished will be done before or at its end day.
     

    Output

    For each test case, print “Case x: ” first, where x is the case number. If there exists a feasible schedule to finish all the tasks, print “Yes”, otherwise print “No”.

    Print a blank line after each test case.
     

    Sample Input

    2
    4 3
    1 3 5 
    1 1 4
    2 3 7
    3 5 9
    
    2 2
    2 1 3
    1 2 2

    Sample Output

    Case 1: Yes
       
    Case 2: Yes

    Source

     
    解题:最大流。。建图确实有点。。。一下子想不到。。。还以为要拆边。。。
     
    好吧 源点到每个任务建边容量为pi,每个任务到期限内的各天连容量为1的边,每天到汇点连容量为m的边。。。
     
    现在很好理解了,如果满流即存在可行方案。。
     
    每天最多m台机器同时工作。。。每个任务需要工作pi天。。。
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 #include <algorithm>
     6 #include <climits>
     7 #include <vector>
     8 #include <queue>
     9 #include <cstdlib>
    10 #include <string>
    11 #include <set>
    12 #include <stack>
    13 #define LL long long
    14 #define pii pair<int,int>
    15 #define INF 0x3f3f3f3f
    16 using namespace std;
    17 const int maxn = 20000;
    18 struct arc{
    19     int to,flow,next;
    20     arc(int x = 0,int y = 0,int z = -1){
    21         to = x;
    22         flow = y;
    23         next = z;
    24     }
    25 };
    26 arc e[maxn*10];
    27 int head[maxn],d[maxn],cur[maxn];
    28 int tot,S,T,n,m;
    29 void add(int u,int v,int flow){
    30     e[tot] = arc(v,flow,head[u]);
    31     head[u] = tot++;
    32     e[tot] = arc(u,0,head[v]);
    33     head[v] = tot++;
    34 }
    35 bool bfs(){
    36     memset(d,-1,sizeof(d));
    37     queue<int>q;
    38     d[T] = 1;
    39     q.push(T);
    40     while(!q.empty()){
    41         int u = q.front();
    42         q.pop();
    43         for(int i = head[u]; ~i; i = e[i].next){
    44             if(e[i^1].flow && d[e[i].to] == -1){
    45                 d[e[i].to] = d[u] + 1;
    46                 q.push(e[i].to);
    47             }
    48         }
    49     }
    50 
    51     return d[S] > -1;
    52 }
    53 int dfs(int u,int low){
    54     if(u == T) return low;
    55     int tmp = 0,a;
    56     for(int &i = cur[u]; ~i; i = e[i].next){
    57         if(e[i].flow && d[e[i].to] + 1 == d[u]&&(a=dfs(e[i].to,min(e[i].flow,low)))){
    58             e[i].flow -= a;
    59             e[i^1].flow += a;
    60             tmp += a;
    61             low -= a;
    62             if(!low) break;
    63         }
    64     }
    65     if(!tmp) d[u] = -1;
    66     return tmp;
    67 }
    68 int dinic(){
    69     int ans  = 0;
    70     while(bfs()){
    71         memcpy(cur,head,sizeof(head));
    72         ans += dfs(S,INF);
    73     }
    74     return ans;
    75 }
    76 int main() {
    77     int cs,pi,si,ei,cao = 1;
    78     scanf("%d",&cs);
    79     while(cs--){
    80         scanf("%d %d",&n,&m);
    81         int mx = 0,sum = 0;
    82         memset(head,-1,sizeof(head));
    83         S = tot = 0;
    84         for(int i = 1; i <= n; ++i){
    85             scanf("%d %d %d",&pi,&si,&ei);
    86             sum += pi;
    87             for(int k = si; k <= ei; ++k) add(i,n+k,1);
    88             add(S,i,pi);
    89             mx = max(mx,ei);
    90         }
    91         T = n + mx + 1;
    92         for(int i = n+1; i < T; ++i) add(i,T,m);
    93         printf("Case %d: %s
    
    ",cao++,dinic() == sum?"Yes":"No");
    94     }
    95     return 0;
    96 }
    View Code
  • 相关阅读:
    Java 多线程概述
    Java 线程的创建和启动
    状态模式
    Spring 依赖注入
    Spring IOC
    在JavaEE中使用Mybatis框架
    Active Reports 补空白行
    SpreadForWin 清空Sheet
    日期格式转换
    Select Case 的实现
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4119649.html
Copyright © 2011-2022 走看看