zoukankan      html  css  js  c++  java
  • UVALive 3211 Now or later

    Now or later

    Time Limit: 9000ms
    Memory Limit: 131072KB
    This problem will be judged on UVALive. Original ID: 3211
    64-bit integer IO format: %lld      Java class name: Main
     

    As you must have experienced, instead of landing immediately, an aircraft sometimes waits in a holding loop close to the runway. This holding mechanism is required by air traffic controllers to space apart aircraft as much as possible on the runway (while keeping delays low). It is formally defined as a ``holding pattern'' and is a predetermined maneuver designed to keep an aircraft within a specified airspace (see Figure 1 for an example).

    Figure 1: A simple Holding Pattern as described in a pilot text book.
     
    epsfbox{p3211.eps}

    Jim Tarjan, an air-traffic controller, has asked his brother Robert to help him to improve the behavior of the airport.

     

    Input

    The Terminal Radar Approach CONtrol (TRACON) controls aircraft approaching and departing when they are between 5 and 50 miles of the airport. In this final scheduling process, air traffic controllers make some aircraft wait before landing. Unfortunately this ``waiting'' process is complex as aircraft follow predetermined routes and their speed cannot be changed. To reach some degree of flexibility in the process, the basic delaying procedure is to make aircraft follow a holding pattern that has been designed for the TRACON area. Such patterns generate a constant prescribed delay for an aircraft (see Figure 1 for an example). Several holding patterns may exist in the same TRACON.

    In the following, we assume that there is a single runway and that when an aircraft enters the TRACON area, it is assigned an early landing time, a late landing time and a possible holding pattern. The early landing time corresponds to the situation where the aircraft does not wait and lands as soon as possible. The late landing time corresponds to the situation where the aircraft waits in the prescribed holding pattern and then lands at that time. We assume that an aircraft enters at most one holding pattern. Hence, the early and late landing times are the only two possible times for the landing.

    The security gap is the minimal elapsed time between consecutive landings. The objective is to maximize the security gap. Robert believes that you can help.

     

    Output

    Assume there are 10 aircraft in the TRACON area. Table 1 provides the corresponding early and late landing times (columns ``Early'' and ``Late'').

    Table 1: A 10 aircraft instance of the problem.
     
    Aircraft Early Late Solution
    A1 44 156 Early
    A2 153 182 Early
    A3 48 109 Late
    A4 160 201 Late
    A5 55 186 Late
    A6 54 207 Early
    A7 55 165 Late
    A8 17 58 Early
    A9 132 160 Early
    A10 87 197 Early


    The maximal security gap is 10 and the corresponding solution is reported in Table 1 (column ``Solution''). In this solution, the aircraft land in the following order: A8, A1, A6, A10, A3,A9, A2, A7, A5, A4. The security gap is realized by aircraft A1 and A6.

     

    Sample Input

     
    10
    44 156
    153 182
    48 109
    160 201
    55 186
    54 207
    55 165
    17 58
    132 160
    87 197
    

    Sample Output

     
    10
    

    Source

     
    解题i:二分+2sat
     
      1 #include <bits/stdc++.h>
      2 using namespace std;
      3 const int maxn = 5010;
      4 struct arc {
      5     int to,next;
      6     arc(int x = 0,int y = -1) {
      7         to = x;
      8         next = y;
      9     }
     10 };
     11 arc e[maxn*maxn];
     12 int head[maxn],dfn[maxn],low[maxn],belong[maxn];
     13 int tot,cnt,scc,n,m;
     14 bool instack[maxn];
     15 stack<int>stk;
     16 void add(int u,int v) {
     17     e[tot] = arc(v,head[u]);
     18     head[u] = tot++;
     19 }
     20 void init() {
     21     for(int i = 0; i < maxn; i++) {
     22         belong[i] = 0;
     23         low[i] = dfn[i] = 0;
     24         head[i] = -1;
     25         instack[i] = false;
     26     }
     27     while(!stk.empty()) stk.pop();
     28     tot = cnt = scc = 0;
     29 }
     30 void tarjan(int u) {
     31     dfn[u] = low[u] = ++cnt;
     32     instack[u] = true;
     33     stk.push(u);
     34     for(int i = head[u]; ~i; i = e[i].next) {
     35         if(!dfn[e[i].to]) {
     36             tarjan(e[i].to);
     37             if(low[e[i].to] < low[u]) low[u] = low[e[i].to];
     38         } else if(instack[e[i].to] && dfn[e[i].to] < low[u])
     39             low[u] = dfn[e[i].to];
     40     }
     41     if(dfn[u] == low[u]) {
     42         scc++;
     43         int v;
     44         do {
     45             v = stk.top();
     46             stk.pop();
     47             instack[v] = false;
     48             belong[v] = scc;
     49         } while(v != u);
     50     }
     51 }
     52 bool solve() {
     53     for(int i = 0; i < (n<<1); i++)
     54         if(!dfn[i]) tarjan(i);
     55     for(int i = 0; i < n; i++)
     56         if(belong[i] == belong[i+n]) return false;
     57     return true;
     58 }
     59 int tim[maxn][2];
     60 bool check(int t) {
     61     init();
     62     for(int i = 0; i < n; ++i)
     63         for(int j = i+1; j < n; ++j) {
     64             if(abs(tim[i][0] - tim[j][0]) < t) {
     65                 add(i,j+n);
     66                 add(j,i+n);
     67             }
     68             if(abs(tim[i][0] - tim[j][1]) < t) {
     69                 add(i,j);
     70                 add(j+n,i+n);
     71             }
     72             if(abs(tim[i][1] - tim[j][0]) < t) {
     73                 add(i+n,j+n);
     74                 add(j,i);
     75             }
     76             if(abs(tim[i][1] - tim[j][1]) < t) {
     77                 add(i+n,j);
     78                 add(j+n,i);
     79             }
     80         }
     81     for(int i = 0; i < 2*n; ++i)
     82         if(!dfn[i]) tarjan(i);
     83     for(int i = 0; i < n; ++i)
     84         if(belong[i] == belong[i+n]) return false;
     85     return true;
     86 }
     87 int main() {
     88     while(~scanf("%d",&n)) {
     89         int low = 0,high = 0;
     90         for(int i = 0; i < n; ++i) {
     91             for(int j = 0; j < 2; ++j) {
     92                 scanf("%d",tim[i]+j);
     93                 high = max(high,tim[i][j]);
     94             }
     95         }
     96         int ret = -1;
     97         while(low <= high) {
     98             int mid = (low + high)>>1;
     99             if(check(mid)) {
    100                 ret = mid;
    101                 low = mid+1;
    102             } else high = mid-1;
    103         }
    104         printf("%d
    ",ret);
    105     }
    106     return 0;
    107 }
    View Code
  • 相关阅读:
    override CreateParams events in delphi
    .NET下获取网页的内容的封装类
    WAYOS三天重启硬件版PCB和程序已设计完成,如果需要的人多就发去工厂统一制作
    WAYOS策略路由专用工具——进程端口自动扫描导入工具
    打造最专业的三天重启工具,本人再对WAYOS智能重启进行全面升级
    WAYOS BCM 机器+授权,全淘宝最低价,全新机器仅258还包邮费
    BCM路由全智能固件升级软件tftp,一键刷路由及常用固件下载
    WAYOS PPPOE用户数据定时备份并上传到FTP,保证数据不会因为掉配置、挂机等而丢失
    WAYOS内置免拉黑终于突破技术大关完美成功,以后再也不需要独立的电脑来运行免拉黑了
    巧用EasyRadius计费策略设置灵的计费费率,保证帐目一目了然
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4693187.html
Copyright © 2011-2022 走看看