zoukankan      html  css  js  c++  java
  • 2015 Multi-University Training Contest 4 hdu 5338 ZZX and Permutations

    ZZX and Permutations

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 771    Accepted Submission(s): 243


    Problem Description
    ZZX likes permutations.

    ZZX knows that a permutation can be decomposed into disjoint cycles(see https://en.wikipedia.org/wiki/Permutation#Cycle_notation). For example:
    145632=(1)(35)(462)=(462)(1)(35)=(35)(1)(462)=(246)(1)(53)=(624)(1)(53)……
    Note that there are many ways to rewrite it, but they are all equivalent.
    A cycle with only one element is also written in the decomposition, like (1) in the example above.

    Now, we remove all the parentheses in the decomposition. So the decomposition of 145632 can be 135462,462135,351462,246153,624153……

    Now you are given the decomposition of a permutation after removing all the parentheses (itself is also a permutation). You should recover the original permutation. There are many ways to recover, so you should find the one with largest lexicographic order.
     
    Input
    First line contains an integer t, the number of test cases.
    Then t testcases follow. In each testcase:
    First line contains an integer n, the size of the permutation.
    Second line contains n space-separated integers, the decomposition after removing parentheses.

    n105. There are 10 testcases satisfying n105, 200 testcases satisfying n1000.
     
    Output
    Output n space-separated numbers in a line for each testcase.
    Don't output space after the last number of a line.
     
    Sample Input
    2
    6
    1 4 5 6 3 2
    2
    1 2
     
    Sample Output
    4 6 2 5 1 3
    2 1
     
    Author
    XJZX
     
    Source
     
    解题:线段树+set
     
     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 const int maxn = 300010;
     4 struct node {
     5     int lt,rt,lazy,maxv;
     6 } tree[maxn<<2];
     7 int d[maxn],val2index[maxn],n;
     8 void pushup(int v) {
     9     tree[v].maxv = max(tree[v<<1].maxv,tree[v<<1|1].maxv);
    10 }
    11 void pushdown(int v) {
    12     if(tree[v].lazy > -1) {
    13         tree[v<<1].lazy = tree[v<<1|1].lazy = tree[v].lazy;
    14         tree[v<<1].maxv = tree[v<<1|1].maxv = tree[v].lazy;
    15         tree[v].lazy = -1;
    16     }
    17 }
    18 void build(int lt,int rt,int v) {
    19     tree[v].lt = lt;
    20     tree[v].rt = rt;
    21     tree[v].lazy = -1;
    22     if(lt == rt) {
    23         tree[v].maxv = d[lt];
    24         return;
    25     }
    26     int mid = (lt + rt)>>1;
    27     build(lt,mid,v<<1);
    28     build(mid+1,rt,v<<1|1);
    29     pushup(v);
    30 }
    31 void update(int lt,int rt,int v) {
    32     if(lt <= tree[v].lt && rt >= tree[v].rt) {
    33         tree[v].lazy = tree[v].maxv = 0;
    34         return;
    35     }
    36     pushdown(v);
    37     if(lt <= tree[v<<1].rt) update(lt,rt,v<<1);
    38     if(rt >= tree[v<<1|1].lt) update(lt,rt,v<<1|1);
    39     pushup(v);
    40 }
    41 int query(int lt,int rt,int v) {
    42     if(lt <= tree[v].lt && rt >= tree[v].rt) return tree[v].maxv;
    43     pushdown(v);
    44     int ret = 0;
    45     if(lt <= tree[v<<1].rt) ret = max(ret,query(lt,rt,v<<1));
    46     if(rt >= tree[v<<1|1].lt) ret = max(ret,query(lt,rt,v<<1|1));
    47     pushup(v);
    48     return ret;
    49 }
    50 set<int>st;
    51 bool used[maxn];
    52 int ret[maxn];
    53 int main() {
    54     int kase;
    55     scanf("%d",&kase);
    56     while(kase--) {
    57         st.clear();
    58         memset(used,false,sizeof used);
    59         memset(ret,0,sizeof ret);
    60         memset(d,0,sizeof d);
    61         scanf("%d",&n);
    62         for(int i = 1; i <= n; ++i) {
    63             scanf("%d",d+i);
    64             val2index[d[i]] = i;
    65         }
    66         build(0,n,1);
    67         st.insert(0);
    68         for(int i = 1; i <= n; ++i) {
    69             if(ret[i]) continue;
    70             int index = val2index[i],mx = 0;
    71             if(!used[d[index+1]]) mx = max(d[index+1],mx);
    72             auto it = st.lower_bound(index);
    73             if(it != st.begin()) --it;
    74             int val = query((*it),index,1);
    75             mx = max(mx,val);
    76             if(mx == d[index+1]) {
    77                 used[d[index+1]] = true;
    78                 ret[i] = d[index+1];
    79                 update(index+1,index+1,1);
    80                 continue;
    81             }
    82             ret[i] = mx;
    83             for(int i = val2index[mx]; i < index; ++i) {
    84                 ret[d[i]] = d[i+1];
    85                 used[d[i]] = true;
    86             }
    87             update(val2index[mx],index,1);
    88             used[d[index]] = true;
    89             for(int i = val2index[mx]; i <= index; ++i)  st.insert(i);
    90         }
    91         for(int i = 1; i <= n; ++i)
    92             printf("%d%c",ret[i],i==n?'
    ':' ');
    93     }
    94     return 0;
    95 }
    View Code
     
  • 相关阅读:
    数组中出现次数超过一半的数字
    Trie字典树算法
    字符串匹配算法 之 基于DFA(确定性有限自动机)
    实现栈最小元素的min函数
    有关有环链表的问题
    浅谈C中的malloc和free
    undefined reference to 'pthread_create'问题解决
    用两个栈实现队列
    resf规范
    单例模式
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4700087.html
Copyright © 2011-2022 走看看