zoukankan      html  css  js  c++  java
  • 2015 Multi-University Training Contest 6 hdu 5358 First One

    First One

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 881    Accepted Submission(s): 273

     soda has an integer array $a_1,a_2,dots,a_n$. Let $S(i,j)$ be the sum of $a_i,a_i+1,dots,a_j$. Now soda wants to know the value below:
     [sum_{i = 1}^{n}sum_{j = i}^{n}(lfloor log_{2}{S(i,j)} floor + 1) imes (i+j) ]
    Note: In this problem, you can consider $log_{2}{0}$ as 0.
     
    Input
    There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
     
    The first line contains an integer $n (1 geq n leq 10^5)$,the number of integers in the array.
    The next line contains n integers $0 leq a_{i} leq 10^{5}$
     
    Output
    For each test case, output the value.
     

    Sample Input
    1
    2
    1 1
     

    Sample Output
    12
     

    Source
    解题:这道题目有意思,我们可以发现 $a_{i} leq 10^{5}$ 这是一个信息,破题的关键.
     
    $log_{2}{sum}$大概会在什么范围呢?sum最多是 $10^{5} imes 10^{5} = 10^{10}$
    也就是说$log_{2}{sum} leq 34$ 
     
    才35,sum的特点是什么?很明显都是非负数,那么sum必须是递增的,单调的,F-100. 我们可以固定$log_{2}{S(i,j)}$ 后 固定左区间j,找出以j作为左区间,然后当然是找出最小的r 和 最大的 R
     
    最小 最大?当然是这样的区间,该区间的和取对数是我们刚刚固定的那个数。区间可以表示成这样 $[j,rdots R]$ 那么从j到r,j到 r+1,...,j 到R ,这些区间的和取对数都会等于同一个数。。
     
    好了如何算$[j,rdots R]$ 的下标和?很明显吗。。j r,j r+1, j r+2,..., j R.把左区间下标一起算了,右区间是个等差数列,求和。
     
    我们在最后把那个表达式里面的1加上
    同样的计算方法
     
     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 typedef long long LL;
     4 const int maxn = 100010;
     5 LL p[38] = {1},sum[maxn];
     6 void init() {
     7     for(int i = 1; i <= 36; ++i)
     8         p[i] = (p[i-1]<<1);
     9 }
    10 int main() {
    11     init();
    12     int kase,n;
    13     scanf("%d",&kase);
    14     while(kase--){
    15         scanf("%d",&n);
    16         for(int i = 1; i <= n; ++i){
    17             scanf("%I64d",sum+i);
    18             sum[i] += sum[i-1];
    19         }
    20         LL ret = 0;
    21         for(int i = 1; i <= 35 && p[i] <= sum[n]; ++i){
    22             int L = 1,R = 0;
    23             LL tmp = 0;
    24             for(int j = 1; j <= n; ++j){
    25                 while(L <= n && sum[L] - sum[j-1] < p[i]) ++L;
    26                 while(R + 1 <= n && sum[R + 1] - sum[j-1] < p[i+1]) ++R;
    27                 if(L <= R) tmp += (LL)j*(R - L + 1) + 1LL*(L + R)*(R - L + 1)/2;
    28             }
    29             ret += tmp*i;
    30         }
    31         for(int i = 1; i <= n; ++i)
    32             ret += LL(n + i)*(n - i + 1)/2 + LL(i)*(n - i + 1);
    33         printf("%I64d
    ",ret);
    34     }
    35     return 0;
    36 }
    View Code
     
  • 相关阅读:
    初学版本控制更新Version control
    关于函数式编程(Functional Programming)
    Annotation
    Container 、Injection
    Build Tools
    Version Control
    URL和URI的区别
    函数式编程语言
    HTTP协议的简单解析
    Windows10安装MySQL8.0
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4710892.html
Copyright © 2011-2022 走看看