zoukankan      html  css  js  c++  java
  • HDU 3698 Let the light guide us

    Let the light guide us

    Time Limit: 2000ms
    Memory Limit: 32768KB
    This problem will be judged on HDU. Original ID: 3698
    64-bit integer IO format: %I64d      Java class name: Main
     
    Plain of despair was once an ancient battlefield where those brave spirits had rested in peace for thousands of years. Actually no one dare step into this sacred land until the rumor that “there is a huge gold mine underneath the plain” started to spread. 

    Recently an accident destroyed the eternal tranquility. Some greedy fools tried using powerful bombs to find the hidden treasure. Of course they failed and such behavior enraged those spirits--the consequence is that all the human villages nearby are haunted by ghosts.

    In order to stop those ghosts as soon as possible, Panda the Archmage and Facer the great architect figure out a nice plan. Since the plain can be represented as grids of N rows and M columns, the plan is that we choose ONLY ONE cell in EACH ROW to build a magic tower so that each tower can use holy light to protect the entire ROW, and finally the whole plain can be covered and all spirits can rest in peace again. It will cost different time to build up a magic tower in different cells. The target is to minimize the total time of building all N towers, one in each row.

    “Ah, we might have some difficulties.” said Panda, “In order to control the towers correctly, we must guarantee that every two towers in two consecutive rows share a common magic area.”

    “What?”

    “Specifically, if we build a tower in cell (i,j) and another tower in cell (i+1,k), then we shall have |j-k|≤f(i,j)+f(i+1,k). Here, f(i,j) means the scale of magic flow in cell (i,j).”

    “How?”

    “Ur, I forgot that you cannot sense the magic power. Here is a map which shows the scale of magic flows in each cell. And remember that the constraint holds for every two consecutive rows.”

    “Understood.”

    “Excellent! Let’s get started!”

    Would you mind helping them?
     

    Input

    There are multiple test cases. 

    Each test case starts with a line containing 2 integers N and M (2<=N<=100,1<=M<=5000), representing that the plain consists N rows and M columns.

    The following N lines contain M integers each, forming a matrix T of N×M. The j-th element in row i (Tij) represents the time cost of building a magic tower in cell (i, j). (0<=Tij<=100000)

    The following N lines contain M integers each, forming a matrix F of N×M. The j-th element in row i (Fij) represents the scale of magic flows in cell (i, j). (0<=Fij<=100000)

    For each test case, there is always a solution satisfying the constraints.

    The input ends with a test case of N=0 and M=0.
     

    Output

    For each test case, output a line with a single integer, which is the minimum time cost to finish all magic towers.
     

    Sample Input

    3 5
    9 5 3 8 7
    8 2 6 8 9
    1 9 7 8 6
    0 1 0 1 2
    1 0 2 1 1
    0 2 1 0 2
    0 0

    Sample Output

    10

    Source

     
    解题:dp[i][j]表示第i行第j列放灯
     
     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 const int N = 105;
     4 const int M = 5005;
     5 const int INF = 0x3f3f3f3f;
     6 struct node {
     7     int minv,lazy;
     8 } tree[M<<2];
     9 int T[N][M],F[N][M],dp[N][M];
    10 void build(int L,int R,int v) {
    11     tree[v].lazy = INF;
    12     tree[v].minv = INF;
    13     if(L == R) return;
    14     int mid = (L + R)>>1;
    15     build(L,mid,v<<1);
    16     build(mid+1,R,v<<1|1);
    17 }
    18 inline void pushdown(int v) {
    19     if(tree[v].lazy < INF) {
    20         tree[v<<1].lazy = min(tree[v<<1].lazy,tree[v].lazy);
    21         tree[v<<1].minv = min(tree[v<<1].minv,tree[v<<1].lazy);
    22         tree[v<<1|1].lazy = min(tree[v<<1|1].lazy,tree[v].lazy);
    23         tree[v<<1|1].minv = min(tree[v<<1|1].minv,tree[v<<1|1].lazy);
    24         tree[v].lazy = INF;
    25     }
    26 }
    27 inline void pushup(int v) {
    28     tree[v].minv = min(tree[v<<1].minv,tree[v<<1|1].minv);
    29 }
    30 void update(int L,int R,int lt,int rt,int val,int v) {
    31     if(lt <= L && rt >= R) {
    32         tree[v].lazy = min(tree[v].lazy,val);
    33         tree[v].minv = min(tree[v].lazy,tree[v].minv);
    34         return;
    35     }
    36     pushdown(v);
    37     int mid = (L + R)>>1;
    38     if(lt <= mid) update(L,mid,lt,rt,val,v<<1);
    39     if(rt > mid) update(mid+1,R,lt,rt,val,v<<1|1);
    40     pushup(v);
    41 }
    42 int query(int L,int R,int lt,int rt,int v) {
    43     if(lt <= L && rt >= R) return tree[v].minv;
    44     pushdown(v);
    45     int mid = (L + R)>>1,ret = INF;
    46     if(lt <= mid) ret = query(L,mid,lt,rt,v<<1);
    47     if(rt > mid) ret = min(ret,query(mid+1,R,lt,rt,v<<1|1));
    48     pushup(v);
    49     return ret;
    50 }
    51 int main() {
    52     int n,m;
    53     while(scanf("%d%d",&n,&m),n||m) {
    54         for(int i = 1; i <= n; ++i)
    55             for(int j = 1; j <= m; ++j)
    56                 scanf("%d",T[i] + j);
    57         for(int i = 1; i <= n; ++i)
    58             for(int j = 1; j <= m; ++j)
    59                 scanf("%d",F[i] + j);
    60         for(int i = 1; i <= m; ++i) dp[1][i] = T[1][i];
    61         for(int i = 2; i <= n; ++i) {
    62             build(1,m,1);
    63             for(int j = 1; j <= m; ++j)
    64                 update(1,m,max(1,j - F[i-1][j]),min(j + F[i-1][j],m),dp[i-1][j],1);
    65             for(int j = 1; j <= m; ++j) {
    66                 int tmp = query(1,m,max(1,j - F[i][j]),min(m,j + F[i][j]),1);
    67                 dp[i][j] = min(INF,tmp + T[i][j]);
    68             }
    69         }
    70         int ret = INF;
    71         for(int i = 1; i <= m; ++i)
    72             ret = min(ret,dp[n][i]);
    73         printf("%d
    ",ret);
    74     }
    75     return 0;
    76 }
    View Code
  • 相关阅读:
    在Win10的注册表编辑器中如何快速跳转到相关键值?
    使用winsw给Win10添加服务
    巧把任意程序添加到Win10控制面板(添加“系统配置”为例)
    在Win8.1开始屏幕添加电源按钮
    win10中,如何隐藏此电脑中的6个文件夹?
    Win10恢复这台电脑里的6个文件夹
    解决Office 2010安装报错1907,没有足够权限注册字体。
    C#面向对象(OOP)入门—第二天—多态和继承(继承)
    C#面向对象(OOP)入门—第一天—多态和继承(方法重载)
    OpenCV与Python之图像的读入与显示以及利用Numpy的图像转换
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4743386.html
Copyright © 2011-2022 走看看