zoukankan      html  css  js  c++  java
  • 2015 Multi-University Training Contest 10 hdu 5407 CRB and Candies

    CRB and Candies

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 453    Accepted Submission(s): 222


    Problem Description
     

    CRB has N different candies. He is going to eat K candies.
    He wonders how many combinations he can select.
    Can you answer his question for all $K(0 leq K leq N)$?
    CRB is too hungry to check all of your answers one by one, so he only asks least common multiple(LCM) of all answers.

    Input
    There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case there is one line containing a single integer N.
    $1 leq T leq 300$
    $1 leq N leq 10^6$

    Output
    For each test case, output a single integer – LCM modulo $1000000007(109+7)$.

    Sample Input
    5
    1
    2
    3
    4
    5

    Sample Output
    1
    2
    3
    12
    10

    Author
    KUT(DPRK)

    解题:看 crazyacking 的解释,涨姿势了

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 typedef long long LL;
     4 const int maxn = 1000002;
     5 const int mod = 1000000007;
     6 bool np[maxn] = {true,true};
     7 int p[maxn],tot;
     8 void init(){
     9     for(int i = 2; i < maxn; ++i){
    10         if(!np[i]) p[tot++] = i;
    11         for(int j = 0; j < tot && i*p[j] < maxn; ++j){
    12             np[i*p[j]] = true;
    13             if(i%p[j] == 0) break;
    14         }
    15     }
    16 }
    17 int main(){
    18     init();
    19     int kase,n;
    20     scanf("%d",&kase);
    21     while(kase--){
    22         scanf("%d",&n);
    23         LL ret = 1;
    24         for(int i = 0; i < tot; ++i){
    25             for(LL j = p[i]; j <= n; j *= p[i])
    26                 if((n+1)%j) ret = ret*p[i]%mod;
    27         }
    28         printf("%I64d
    ",ret);
    29     }
    30     return 0;
    31 }
    View Code
  • 相关阅读:
    P1158 导弹拦截
    麦基数(p1045)
    Django之路由层
    web应用与http协议
    Django之简介
    Mysql之表的查询
    Mysql之完整性约束
    Mysql之常用操作
    Mysql之数据类型
    Mysql之数据库简介
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4749673.html
Copyright © 2011-2022 走看看