zoukankan      html  css  js  c++  java
  • SPOJ SUBLEX

    SUBLEX - Lexicographical Substring Search

    no tags 

    Little Daniel loves to play with strings! He always finds different ways to have fun with strings! Knowing that, his friend Kinan decided to test his skills so he gave him a string S and asked him Q questions of the form:


    If all distinct substrings of string S were sorted lexicographically, which one will be the K-th smallest?


    After knowing the huge number of questions Kinan will ask, Daniel figured out that he can't do this alone. Daniel, of course, knows your exceptional programming skills, so he asked you to write him a program which given S will answer Kinan's questions.

    Example:


    S = "aaa" (without quotes)
    substrings of S are "a" , "a" , "a" , "aa" , "aa" , "aaa". The sorted list of substrings will be:
    "a", "aa", "aaa".

    Input

    In the first line there is Kinan's string S (with length no more than 90000 characters). It contains only small letters of English alphabet. The second line contains a single integer Q (Q <= 500) , the number of questions Daniel will be asked. In the next Q lines a single integer K is given (0 < K < 2^31).

    Output

    Output consists of Q lines, the i-th contains a string which is the answer to the i-th asked question.

    Example

    Input:
    aaa
    2
    2
    3

    Output: aa
    aaa

    解题:SAM。我们可以算路径,来计算它后面有多少个字串,因为路径个数就代表了不同子串的个数

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 const int maxn = 200010;
     4 struct node {
     5     int son[26],f,len;
     6     void init() {
     7         f = -1;
     8         len = 0;
     9         memset(son,-1,sizeof son);
    10     }
    11 };
    12 struct SAM {
    13     node e[maxn<<1];
    14     int tot,last;
    15     void init() {
    16         tot = last = 0;
    17         e[tot++].init();
    18     }
    19     int newnode(int len = 0) {
    20         e[tot].init();
    21         e[tot].len = len;
    22         return tot++;
    23     }
    24     void extend(int c) {
    25         int p = last,np = newnode(e[p].len + 1);
    26         while(p != -1 && e[p].son[c] == -1) {
    27             e[p].son[c] = np;
    28             p = e[p].f;
    29         }
    30         if(p == -1) e[np].f = 0;
    31         else {
    32             int q = e[p].son[c];
    33             if(e[p].len + 1 == e[q].len) e[np].f = q;
    34             else {
    35                 int nq = newnode();
    36                 e[nq] = e[q];
    37                 e[nq].len = e[p].len + 1;
    38                 e[q].f = e[np].f = nq;
    39                 while(p != -1 && e[p].son[c] == q) {
    40                     e[p].son[c] = nq;
    41                     p = e[p].f;
    42                 }
    43             }
    44         }
    45         last = np;
    46     }
    47 } sam;
    48 char str[maxn];
    49 int c[maxn],sa[maxn],dp[maxn],ans[maxn];
    50 node *e = sam.e;
    51 void solve(){
    52     int Q,k;
    53     scanf("%d",&Q);
    54     while(Q--){
    55         scanf("%d",&k);
    56         int tot = 0,p = 0;
    57         while(k){
    58            for(int i = 0; i < 26; ++i){
    59                 if(dp[e[p].son[i]] < k) k -= dp[e[p].son[i]];
    60                 else {
    61                     ans[tot++] = i;
    62                     p = e[p].son[i];
    63                     --k;
    64                     break;
    65                 }
    66            }
    67         }
    68         for(int i = 0; i < tot; ++i)
    69             putchar(ans[i] + 'a');
    70         putchar('
    ');
    71     }
    72 }
    73 int main() {
    74     sam.init();
    75     scanf("%s",str);
    76     int len = strlen(str);
    77     for(int i = c[len] = 0; str[i]; ++i) {
    78         sam.extend(str[i] - 'a');
    79         c[i] = 0;
    80     }
    81     for(int i = 1; i < sam.tot; ++i) {
    82         c[e[i].len]++;
    83         dp[i] = 1;
    84     }
    85     for(int i = 1; i <= len; ++i) c[i] += c[i-1];
    86     for(int i = sam.tot-1; i > 0; --i) sa[c[e[i].len]--] = i;
    87     for(int i = sam.tot-1; i > 0; --i){
    88         int v = sa[i];
    89         for(int j = 0; j < 26; ++j)
    90             if(e[v].son[j] != -1) dp[v] += dp[e[v].son[j]];
    91     }
    92     solve();
    93     return 0;
    94 }
    View Code
  • 相关阅读:
    POJ-2528 Mayor's posters 线段树 离散化
    POJ 3468 A Simple Problem with Integers 线段树区间修改
    CodeForces
    POJ3208 Apocalypse Someday 数位DP经典绝世好题
    CodeForces114 Double Happiness 数论 二次筛法 bitset的应用
    P3146 [USACO16OPEN]248 G 区间DP 暴力DP
    【Python学习】requests短连接
    【Windows学习】免登录和自动登录
    【Linux学习】expect远程下载和上传样例
    【Linux学习】软件包管理-wget,rpm,yum,apt-get
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4762289.html
Copyright © 2011-2022 走看看