zoukankan      html  css  js  c++  java
  • HDU 4474 Yet Another Multiple Problem

    Yet Another Multiple Problem

    Time Limit: 40000/20000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 4734    Accepted Submission(s): 1021

    Problem Description
    There are tons of problems about integer multiples. Despite the fact that the topic is not original, the content is highly challenging. That’s why we call it “Yet Another Multiple Problem”.
    In this problem, you’re asked to solve the following question: Given a positive integer n and m decimal digits, what is the minimal positive multiple of n whose decimal notation does not contain any of the given digits?
     


    Input
    There are several test cases.
    For each test case, there are two lines. The first line contains two integers n and m (1 ≤ n ≤ 104). The second line contains m decimal digits separated by spaces.
    Input is terminated by EOF.
     


    Output
    For each test case, output one line “Case X: Y” where X is the test case number (starting from 1) while Y is the minimal multiple satisfying the above-mentioned conditions or “-1” (without quotation marks) in case there does not exist such a multiple.
     


    Sample Input
    2345 3
    7 8 9
    100 1
    0
     


    Sample Output
    Case 1: 2345
    Case 2: -1
     


    Source

     解题:余数相同的情况下保存数位值较小的

    因为两者同样都有可能成为n的倍数,但是我们要求的正是最小的

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 const int maxn = 10010;
     4 int n,m,pre[maxn],num[maxn];
     5 bool bad[maxn];
     6 void out(int u){
     7     if(pre[u] != -1) out(pre[u]);
     8     printf("%d",num[u]);
     9 }
    10 void bfs() {
    11     queue<int>q;
    12     for(int i = 1; i < 10; ++i) {
    13         if(bad[i]) continue;
    14         int t = i%n;
    15         if(!t) {
    16             printf("%d",i);
    17             return;
    18         }
    19         num[t] = i;
    20         q.push(t);
    21     }
    22     while(!q.empty()) {
    23         int u = q.front();
    24         q.pop();
    25         for(int i = 0; i < 10; ++i) {
    26             if(bad[i]) continue;
    27             int t = (u*10 + i)%n;
    28             if(num[t] == -1) {
    29                 num[t] = i;
    30                 pre[t] = u;
    31                 q.push(t);
    32             }
    33             if(!t) {
    34                 out(t);
    35                 return;
    36             }
    37         }
    38     }
    39     printf("-1");
    40 }
    41 int main() {
    42     int kase = 1;
    43     while(~scanf("%d%d",&n,&m)) {
    44         memset(pre,-1,sizeof pre);
    45         memset(bad,false,sizeof bad);
    46         memset(num,-1,sizeof num);
    47         while(m--) {
    48             int tmp;
    49             scanf("%d",&tmp);
    50             bad[tmp] = true;
    51         }
    52         printf("Case %d: ",kase++);
    53         bfs();
    54         putchar('
    ');
    55     }
    56     return 0;
    57 }
    View Code
  • 相关阅读:
    练习5-3 数字金字塔 (15分)
    JSTL标签
    ssm+mysql+jsp打造在线考试系统WeKnow-学生端
    JSP常用内置对象
    mybatis入门2
    mybtis入门
    数据源的作用
    ssm动态查询向前台传json
    ssm中的注解
    ssm中的模糊查询
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4776844.html
Copyright © 2011-2022 走看看