Tree of Tree
64-bit integer IO format: %lld Java class name: Main
You're given a tree with weights of each node, you need to find the maximum subtree of specified size of this tree.
Tree Definition
A tree is a connected graph which contains no cycles.
Input
There are several test cases in the input.
The first line of each case are two integers N(1 <= N <= 100), K(1 <= K <= N), where N is the number of nodes of this tree, and K is the subtree's size, followed by a line with N nonnegative integers, where the k-th integer indicates the weight of k-th node. The following N - 1 lines describe the tree, each line are two integers which means there is an edge between these two nodes. All indices above are zero-base and it is guaranteed that the description of the tree is correct.
Output
One line with a single integer for each case, which is the total weights of the maximum subtree.
Sample Input
3 1 10 20 30 0 1 0 2 3 2 10 20 30 0 1 0 2
Sample Output
30 40
Source
Author
1 #include <bits/stdc++.h> 2 using namespace std; 3 const int INF = 0x3f3f3f3f; 4 const int maxn = 200; 5 vector<int>g[maxn]; 6 int w[maxn],dp[maxn][maxn],n,m,ret; 7 void dfs(int u,int fa){ 8 memset(dp[u],0,sizeof dp[u]); 9 dp[u][1] = w[u]; 10 for(int i = g[u].size()-1; i >= 0; --i){ 11 if(g[u][i] == fa) continue; 12 dfs(g[u][i],u); 13 for(int j = m; j; --j) 14 for(int k = 0; k < j; ++k) 15 dp[u][j] = max(dp[u][j],dp[u][j-k] + dp[g[u][i]][k]); 16 } 17 ret = max(dp[u][m],ret); 18 } 19 int main(){ 20 int u,v; 21 while(~scanf("%d%d",&n,&m)){ 22 for(int i = 0; i < maxn; ++i) g[i].clear(); 23 for(int i = 0; i < n; ++i) scanf("%d",w+i); 24 for(int i = 1; i < n; ++i){ 25 scanf("%d%d",&u,&v); 26 g[u].push_back(v); 27 g[v].push_back(u); 28 } 29 ret = 0; 30 dfs(0,-1); 31 printf("%d ",ret); 32 } 33 return 0; 34 }