zoukankan      html  css  js  c++  java
  • SPOJ QTREE2 Query on a tree II

    Query on a tree II

    Time Limit: 2000ms
    Memory Limit: 262144KB
    This problem will be judged on SPOJ. Original ID: QTREE2
    64-bit integer IO format: %lld      Java class name: Main
     

    You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, 3...N-1. Each edge has an integer value assigned to it, representing its length.

    We will ask you to perfrom some instructions of the following form:

    • DIST a b : ask for the distance between node a and node b
      or
    • KTH a b k : ask for the k-th node on the path from node a to node b

    Example:
    N = 6 
    1 2 1 // edge connects node 1 and node 2 has cost 1 
    2 4 1 
    2 5 2 
    1 3 1 
    3 6 2 

    Path from node 4 to node 6 is 4 -> 2 -> 1 -> 3 -> 6 
    DIST 4 6 : answer is 5 (1 + 1 + 1 + 2 = 5) 
    KTH 4 6 4 : answer is 3 (the 4-th node on the path from node 4 to node 6 is 3) 

    Input

    The first line of input contains an integer t, the number of test cases (t <= 25). t test cases follow.

    For each test case:

    • In the first line there is an integer N (N <= 10000)
    • In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between ab of cost c (c <= 100000)
    • The next lines contain instructions "DIST a b" or "KTH a b k"
    • The end of each test case is signified by the string "DONE".

    There is one blank line between successive tests.

    Output

    For each "DIST" or "KTH" operation, write one integer representing its result.

    Print one blank line after each test.

    Example

    Input:
    1
    
    6
    1 2 1
    2 4 1
    2 5 2
    1 3 1
    3 6 2
    DIST 4 6
    KTH 4 6 4
    DONE
    
    Output:
    5
    3
    
     

    Source

     
    解题:LCT
     
      1 #include <bits/stdc++.h>
      2 using namespace std;
      3 const int maxn = 100010;
      4 struct arc {
      5     int to,w,next;
      6     arc(int x = 0,int y = 0,int z = -1) {
      7         to = x;
      8         w = y;
      9         next = z;
     10     }
     11 } e[maxn<<1];
     12 int head[maxn],tot;
     13 void add(int u,int v,int w) {
     14     e[tot] = arc(v,w,head[u]);
     15     head[u] = tot++;
     16 }
     17 struct LCT {
     18     int fa[maxn],ch[maxn][2],sz[maxn];
     19     int key[maxn],pa[maxn],sum[maxn];
     20     inline void pushup(int x) {
     21         sz[x] = 1 + sz[ch[x][0]] + sz[ch[x][1]];
     22         sum[x] = key[x] + sum[ch[x][0]] + sum[ch[x][1]];
     23     }
     24     void rotate(int x,int kd) {
     25         int y = fa[x];
     26         ch[y][kd^1] = ch[x][kd];
     27         fa[ch[x][kd]] = x;
     28         fa[x] = fa[y];
     29         ch[x][kd] = y;
     30         fa[y] = x;
     31         if(fa[x]) ch[fa[x]][y == ch[fa[x]][1]] = x;
     32         pushup(y);
     33     }
     34     void splay(int x,int goal) {
     35         while(fa[x] != goal) {
     36             if(fa[fa[x]] == goal) rotate(x,x == ch[fa[x]][0]);
     37             else {
     38                 int y = fa[x],z = fa[y],s = (y == ch[z][0]);
     39                 if(x == ch[y][s]) {
     40                     rotate(x,s^1);
     41                     rotate(x,s);
     42                 } else {
     43                     rotate(y,s);
     44                     rotate(x,s);
     45                 }
     46             }
     47         }
     48         pushup(x);
     49     }
     50     void access(int x) {
     51         for(int y = 0; x; x = pa[x]) {
     52             splay(x,0);
     53             fa[ch[x][1]] = 0;
     54             pa[ch[x][1]] = x;
     55             ch[x][1] = y;
     56             fa[y] = x;
     57             pa[y] = 0;
     58             y = x;
     59             pushup(x);
     60         }
     61     }
     62     int select(int x,int k) {
     63         while(sz[ch[x][0]] + 1 != k) {
     64             if(k < sz[ch[x][0]] + 1) x = ch[x][0];
     65             else {
     66                 k -= sz[ch[x][0]] + 1;
     67                 x = ch[x][1];
     68             }
     69         }
     70         return x;
     71     }
     72     int kth(int y,int x,int k) {
     73         access(y);
     74         for(y = 0; x; x = pa[x]) {
     75             splay(x,0);
     76             if(!pa[x]) {
     77                 if(sz[ch[x][1]] + 1 == k) return x;
     78                 if(sz[ch[x][1]] + 1 > k) return select(ch[x][1],sz[ch[x][1]] - k + 1);
     79                 return select(y,k - sz[ch[x][1]] - 1);
     80             }
     81             fa[ch[x][1]] = 0;
     82             pa[ch[x][1]] = x;
     83             ch[x][1] = y;
     84             fa[y] = x;
     85             pa[y] = 0;
     86             y = x;
     87             pushup(x);
     88         }
     89         return 0;
     90     }
     91     int dis(int x,int y) {
     92         access(y);
     93         for(y = 0; x; x = pa[x]) {
     94             splay(x,0);
     95             if(!pa[x]) return sum[y] + sum[ch[x][1]];
     96             fa[ch[x][1]] = 0;
     97             pa[ch[x][1]] = x;
     98             ch[x][1] = y;
     99             fa[y] = x;
    100             pa[y] = 0;
    101             y = x;
    102             pushup(x);
    103         }
    104         return 0;
    105     }
    106     void build(int _val,int u,int v) {
    107         sz[v] = 1;
    108         ch[v][1] = ch[v][0] = fa[v] = 0;
    109         pa[v] = u;
    110         key[v] = sum[v] = _val;
    111     }
    112 } spt;
    113 void dfs(int u,int fa) {
    114     for(int i = head[u]; ~i; i = e[i].next) {
    115         if(e[i].to == fa) continue;
    116         spt.build(e[i].w,u,e[i].to);
    117         dfs(e[i].to,u);
    118     }
    119 }
    120 int main() {
    121     int kase,n,u,v,w;
    122     char op[10];
    123     scanf("%d",&kase);
    124     while(kase--) {
    125         scanf("%d",&n);
    126         memset(head,-1,sizeof head);
    127         tot = 0;
    128         for(int i = 1; i < n; ++i) {
    129             scanf("%d%d%d",&u,&v,&w);
    130             add(u,v,w);
    131             add(v,u,w);
    132         }
    133         spt.build(0,0,1);
    134         dfs(1,1);
    135         while(scanf("%s",op) && op[1] != 'O') {
    136             if(op[1] == 'I') {
    137                 scanf("%d%d",&u,&v);
    138                 if(u == v) puts("0");
    139                 else printf("%d
    ",spt.dis(u,v));
    140             } else if(op[1] == 'T') {
    141                 scanf("%d%d%d",&u,&v,&w);
    142                 printf("%d
    ",spt.kth(u,v,w));
    143             } else break;
    144         }
    145         puts("");
    146     }
    147     return 0;
    148 }
    149 /*
    150 
    151 1
    152 5
    153 1 2 1
    154 2 3 2
    155 3 4 3
    156 3 5 4
    157 
    158 */
    View Code
  • 相关阅读:
    初学OptaPlanner-01- 什么是OptaPlanner?
    初学推荐系统-05-Wide&Deep [附tensorflow的WideDeepModel代码简单实践]
    初学推荐系统-04-FM (因子分解机:多特征的二阶特征交叉)
    初学推荐系统-03- 隐语义模型与矩阵分解
    初学推荐系统-02-协同过滤 (UserCF & ItermCF) -附简单示例和优缺点分析
    [Datawhale 10月] 初学推荐系统-01-概述
    TiDB-BR数据备份和恢复工具
    Oracle-估算运行时间长的耗时操作语句
    Hadoop、Spark——完全分布式HA集群搭建
    Hadoop——集群参数配置详解
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4883195.html
Copyright © 2011-2022 走看看