zoukankan      html  css  js  c++  java
  • HDU 5521 Meeting

    Meeting

    Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
    Total Submission(s): 3    Accepted Submission(s): 1

    Problem Description
    Bessie and her friend Elsie decide to have a meeting. However, after Farmer John decorated his
    fences they were separated into different blocks. John's farm are divided into n blocks labelled from 1 to n.
    Bessie lives in the first block while Elsie lives in the n-th one. They have a map of the farm
    which shows that it takes they $t_i$ minutes to travel from a block in $E_i$ to another block
    in $E_i$ where $E_i (1leq ileq m)$ is a set of blocks. They want to know how soon they can meet each other
    and which block should be chosen to have the meeting.

    Input
    The first line contains an integer $T (1leq Tleq 6)$, the number of test cases. Then T test cases
    follow.

    The first line of input contains n and m. $2leq n leq 10^5$. The following m lines describe the sets $E_i (1leq ileq m)$. Each line will contain two integers $t_i(1leq t_ileq 10^9)$and $Si (S_i>0)$ firstly. Then Si integer follows which are the labels of blocks in Ei. It is guaranteed that $sum_{i=1}^{m}S_ileq 10^6$.

    Output
    For each test case, if they cannot have the meeting, then output "Evil John" (without quotes) in one line.

    Otherwise, output two lines. The first line contains an integer, the time it takes for they to meet.
    The second line contains the numbers of blocks where they meet. If there are multiple
    optional blocks, output all of them in ascending order.

    Sample Input
    2
    5 4
    1 3 1 2 3
    2 2 3 4
    10 2 1 5
    3 3 3 4 5
    3 1
    1 2 1 2
     
    Sample Output
    Case #1: 3
    3 4
    Case #2: Evil John
    Hint
    In the first case, it will take Bessie 1 minute travelling to the 3rd block, and it will take Elsie 3 minutes travelling to the 3rd block. It will take Bessie 3 minutes travelling to the 4th block, and it will take Elsie 3 minutes travelling to the 4th block. In the second case, it is impossible for them to meet.
     
    Source
     
    Recommend
    wange2014

     解题:最短路,建图有些许技巧,就那么回事

     1 #include <stdio.h>
     2 #include <cstring>
     3 #include <algorithm>
     4 #include <vector>
     5 #include <queue>
     6 using namespace std;
     7 const int maxn = 2000010;
     8 using LL = long long;
     9 using PLI = pair<LL,int>;
    10 const LL INF = 0x3f3f3f3f3f3f3f3f;
    11 struct arc {
    12     int to,next;
    13     LL w;
    14     arc(int x = 0,LL y = 0,int z = -1) {
    15         to = x;
    16         w = y;
    17         next = z;
    18     }
    19 } e[8000010];
    20 int head[maxn],n,m,tot;
    21 void add(int u,int v,LL w) {
    22     e[tot] = arc(v,w,head[u]);
    23     head[u] = tot++;
    24 }
    25 priority_queue<PLI,vector<PLI>,greater<PLI>>q;
    26 bool done[maxn];
    27 LL d[2][maxn];
    28 void dijkstra(LL d[maxn],int s) {
    29     while(!q.empty()) q.pop();
    30     q.push(PLI(0,s));
    31     d[s] = 0;
    32     memset(done,false,sizeof done);
    33     while(!q.empty()) {
    34         int u = q.top().second;
    35         q.pop();
    36         if(done[u]) continue;
    37         done[u] = true;
    38         for(int i = head[u]; ~i; i = e[i].next) {
    39             if(d[e[i].to] > d[u] + e[i].w) {
    40                 d[e[i].to] = d[u] + e[i].w;
    41                 q.push(PLI(d[e[i].to],e[i].to));
    42             }
    43         }
    44     }
    45 }
    46 vector<int>ans;
    47 int main() {
    48     int kase,cs = 1;
    49     scanf("%d",&kase);
    50     while(kase--) {
    51         scanf("%d%d",&n,&m);
    52         memset(head,-1,sizeof head);
    53         tot = 0;
    54         for(int i = 1,t,s,tmp; i <= m; ++i) {
    55             scanf("%d%d",&t,&s);
    56             while(s--) {
    57                 scanf("%d",&tmp);
    58                 add(n + i,tmp,t);
    59                 add(tmp,n + i,0);
    60             }
    61         }
    62         memset(d,0x3f,sizeof d);
    63         dijkstra(d[0],1);
    64         dijkstra(d[1],n);
    65         LL ret = INF;
    66         ans.clear();
    67         for(int i = 1; i <= n; ++i) {
    68             if(max(d[0][i],d[1][i]) < ret) {
    69                 ans.clear();
    70                 ans.push_back(i);
    71                 ret = max(d[0][i],d[1][i]);
    72             } else if(max(d[0][i],d[1][i]) == ret) ans.push_back(i);
    73         }
    74         if(ret < INF) {
    75             printf("Case #%d: %I64d
    ",cs++,ret);
    76             bool flag = false;
    77             for(auto it:ans) {
    78                 if(flag) putchar(' ');
    79                 printf("%d",it);
    80                 flag = true;
    81             }
    82             putchar('
    ');
    83         } else printf("Case #%d: Evil John
    ",cs++);
    84     }
    85     return 0;
    86 }
    View Code
  • 相关阅读:
    第六周学习总结
    2,8,16进制转换的实现
    求最大公约数伪代码
    fibnacci数列递归实现
    2018-2019-1 20165337 实验五 通讯协议设计
    2018-2019-1 20165337 《信息安全系统设计基础》第九周学习总结
    2018-2019-1 20165325 20165320 20165337 实验四 外设驱动程序设计
    2018-2019-1 20165337 《信息安全系统设计基础》第八周学习总结
    2018-2019-1 20165337 实验三 实时系统
    2018-2019-1 20165337 《信息安全系统设计基础》第七周学习总结
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4925710.html
Copyright © 2011-2022 走看看