zoukankan      html  css  js  c++  java
  • poj 2230 Watchcow (欧拉回路的应用)

    http://poj.org/problem?id=2230

    Watchcow
    Time Limit: 3000MS   Memory Limit: 65536K
    Total Submissions: 5236   Accepted: 2194   Special Judge

    Description

    Bessie's been appointed the new watch-cow for the farm. Every night, it's her job to walk across the farm and make sure that no evildoers are doing any evil. She begins at the barn, makes her patrol, and then returns to the barn when she's done. 

    If she were a more observant cow, she might be able to just walk each of M (1 <= M <= 50,000) bidirectional trails numbered 1..M between N (2 <= N <= 10,000) fields numbered 1..N on the farm once and be confident that she's seen everything she needs to see. But since she isn't, she wants to make sure she walks down each trail exactly twice. It's also important that her two trips along each trail be in opposite directions, so that she doesn't miss the same thing twice. 

    A pair of fields might be connected by more than one trail. Find a path that Bessie can follow which will meet her requirements. Such a path is guaranteed to exist.

    Input

    * Line 1: Two integers, N and M. 

    * Lines 2..M+1: Two integers denoting a pair of fields connected by a path.

    Output

    * Lines 1..2M+1: A list of fields she passes through, one per line, beginning and ending with the barn at field 1. If more than one solution is possible, output any solution.

    Sample Input

    4 5
    1 2
    1 4
    2 3
    2 4
    3 4

    Sample Output

    1
    2
    3
    4
    2
    1
    4
    3
    2
    4
    1

    对路径进行双向处理之后,直接进行欧拉回路的DFS搜索

    代码:

     1 #include<algorithm>
     2 #include<iostream>
     3 #include<stdio.h>
     4 #include<string.h>
     5 #include<math.h>
     6 #include<queue>
     7 #include<stack>
     8 using namespace std;
     9 #define maxn 2*50000+10
    10 #define maxv 10000+10
    11 
    12 struct Nod
    13 {
    14     int next,to;
    15 }node[maxn];
    16 
    17 int used[maxn],adj[maxv];
    18 
    19 void init()
    20 {
    21     memset(used,0,sizeof(used));
    22     memset(adj,-1,sizeof(adj));
    23 }
    24 
    25 void Eular(int idex)
    26 {
    27     int i;
    28     for(i=adj[idex];i!=-1;i=node[i].next)
    29     {
    30         if(!used[i])
    31         {
    32             used[i]=1;
    33             Eular(node[i].to);
    34         }
    35     }
    36     printf("%d\n",idex);
    37 }
    38 
    39 
    40 int main()
    41 {
    42     int n,m;
    43     while(~scanf("%d%d",&n,&m))
    44     {
    45         init();
    46         int i,u,v;
    47         for(i=0;i<m;i++)
    48         {
    49             scanf("%d%d",&u,&v);
    50             //u->v
    51             node[i<<1].to=v;
    52             node[i<<1].next=adj[u];
    53             adj[u]=i<<1;
    54             //v->u
    55             node[i*2+1].to=u;
    56             node[i*2+1].next=adj[v];
    57             adj[v]=i*2+1;
    58         }
    59         Eular(1);
    60     }
    61     return 0;
    62 }
  • 相关阅读:
    springmvc注意点
    MySQL修改约束
    MySQL事务(脏读、不可重复读、幻读)
    浅谈Python-IO多路复用(select、poll、epoll模式)
    浅析python-socket编程
    浅析python迭代器及生成器函数
    并发、并行、同步、异步、阻塞、非阻塞概念整理
    HTTP请求响应的过程
    浅析TCP三次握手及四次挥手
    浅谈python闭包及装饰器
  • 原文地址:https://www.cnblogs.com/crazyapple/p/3134750.html
Copyright © 2011-2022 走看看