zoukankan      html  css  js  c++  java
  • poj 2230 Watchcow (欧拉回路的应用)

    http://poj.org/problem?id=2230

    Watchcow
    Time Limit: 3000MS   Memory Limit: 65536K
    Total Submissions: 5236   Accepted: 2194   Special Judge

    Description

    Bessie's been appointed the new watch-cow for the farm. Every night, it's her job to walk across the farm and make sure that no evildoers are doing any evil. She begins at the barn, makes her patrol, and then returns to the barn when she's done. 

    If she were a more observant cow, she might be able to just walk each of M (1 <= M <= 50,000) bidirectional trails numbered 1..M between N (2 <= N <= 10,000) fields numbered 1..N on the farm once and be confident that she's seen everything she needs to see. But since she isn't, she wants to make sure she walks down each trail exactly twice. It's also important that her two trips along each trail be in opposite directions, so that she doesn't miss the same thing twice. 

    A pair of fields might be connected by more than one trail. Find a path that Bessie can follow which will meet her requirements. Such a path is guaranteed to exist.

    Input

    * Line 1: Two integers, N and M. 

    * Lines 2..M+1: Two integers denoting a pair of fields connected by a path.

    Output

    * Lines 1..2M+1: A list of fields she passes through, one per line, beginning and ending with the barn at field 1. If more than one solution is possible, output any solution.

    Sample Input

    4 5
    1 2
    1 4
    2 3
    2 4
    3 4

    Sample Output

    1
    2
    3
    4
    2
    1
    4
    3
    2
    4
    1

    对路径进行双向处理之后,直接进行欧拉回路的DFS搜索

    代码:

     1 #include<algorithm>
     2 #include<iostream>
     3 #include<stdio.h>
     4 #include<string.h>
     5 #include<math.h>
     6 #include<queue>
     7 #include<stack>
     8 using namespace std;
     9 #define maxn 2*50000+10
    10 #define maxv 10000+10
    11 
    12 struct Nod
    13 {
    14     int next,to;
    15 }node[maxn];
    16 
    17 int used[maxn],adj[maxv];
    18 
    19 void init()
    20 {
    21     memset(used,0,sizeof(used));
    22     memset(adj,-1,sizeof(adj));
    23 }
    24 
    25 void Eular(int idex)
    26 {
    27     int i;
    28     for(i=adj[idex];i!=-1;i=node[i].next)
    29     {
    30         if(!used[i])
    31         {
    32             used[i]=1;
    33             Eular(node[i].to);
    34         }
    35     }
    36     printf("%d\n",idex);
    37 }
    38 
    39 
    40 int main()
    41 {
    42     int n,m;
    43     while(~scanf("%d%d",&n,&m))
    44     {
    45         init();
    46         int i,u,v;
    47         for(i=0;i<m;i++)
    48         {
    49             scanf("%d%d",&u,&v);
    50             //u->v
    51             node[i<<1].to=v;
    52             node[i<<1].next=adj[u];
    53             adj[u]=i<<1;
    54             //v->u
    55             node[i*2+1].to=u;
    56             node[i*2+1].next=adj[v];
    57             adj[v]=i*2+1;
    58         }
    59         Eular(1);
    60     }
    61     return 0;
    62 }
  • 相关阅读:
    LocalSessionFactoryBean有几个属性查找hibernate映射文件
    关于Spring中配置LocalSessionFactoryBean来生成SessionFactory
    【Spring源码分析】配置文件读取流程
    Java序列化接口的作用总结1
    Java序列化接口的作用总结
    hibernate抓取策略
    170531、FormData 对象的使用
    170530、java 迭代hashmap常用的三种方法
    170529、springMVC 的工作原理和机制
    170526、spring 执行定时任务
  • 原文地址:https://www.cnblogs.com/crazyapple/p/3134750.html
Copyright © 2011-2022 走看看