zoukankan      html  css  js  c++  java
  • 保存标注对象到txt 制作xml

    1、算法将检测的目标名称和目标位置保存到txt文本

    图片名  xmin ymin xmax ymax

    (4).avi237face.jpg
    4
    smoke 83 234 142 251
    hand 119 255 271 306
    eye 178 148 216 163
    eye 111 156 148 173

    #!/usr/bin/python
    # -*- coding: UTF-8 -*-
    
    import os, h5py, cv2, sys, shutil
    import numpy as np
    from xml.dom.minidom import Document
    
    rootdir = "G:/MTCNNTraining/faceData/train"
    convet2yoloformat = True
    convert2vocformat = True
    resized_dim = (48, 48)
    
    # 最小取20大小的脸,并且补齐
    minsize2select = 1
    usepadding = True
    
    
    
    def convertimgset(img_set="train"):
        imgdir = rootdir + "/trainImages"
        gtfilepath = rootdir + "/SSDSave.txt"
    
        imagesdir = rootdir + "/images"
        vocannotationdir = rootdir + "/Annotations"
        labelsdir = rootdir + "/labels"
    
        if not os.path.exists(imagesdir):
            os.mkdir(imagesdir)
        if convet2yoloformat:
            if not os.path.exists(labelsdir):
                os.mkdir(labelsdir)
        if convert2vocformat:
            if not os.path.exists(vocannotationdir):
                os.mkdir(vocannotationdir)
    
        index = 0
        with open(gtfilepath, 'r') as gtfile:
            while (True):  # and len(faces)<10
                filename = gtfile.readline()[:-1]
                if (filename == ""):
                    break
                sys.stdout.write("
    " + str(index) + ":" + filename + "			")
                sys.stdout.flush()
                imgpath = imgdir + "/" + filename
                img = cv2.imread(imgpath)
                if not img.data:
                    break
                imgheight = img.shape[0]
                imgwidth = img.shape[1]
                maxl = max(imgheight, imgwidth)
    
                paddingleft = (maxl - imgwidth) >> 1
                paddingright = (maxl - imgwidth) >> 1
                paddingbottom = (maxl - imgheight) >> 1
                paddingtop = (maxl - imgheight) >> 1
                saveimg = cv2.copyMakeBorder(img, paddingtop, paddingbottom, paddingleft, paddingright, cv2.BORDER_CONSTANT,value=0)
                showimg = saveimg.copy()
    
                numbbox = int(gtfile.readline())
                bboxes = []
                bnames=[]
                for i in range(numbbox):
                    line_read = gtfile.readline()
                    line_cor = line_read.strip().split(" ")
                    obj_name = line_cor[0]
                    #line = line_cor[1:5]
                    line = list(map(int,line_cor[1:5]))
    
                    if (int(line[3]) <= 0 or int(line[2]) <= 0):
                        continue
                    x = int(line[0]) + paddingleft #左上角顶点x
                    y = int(line[1]) + paddingtop #左上角顶点y
                    width = int(line[2]) - int(line[0]) + 1 #宽度
                    height = int(line[3]) - int(line[1])+ 1 #高度
                    bbox = (x, y, width, height)
                    #x2 = x + width
                    #y2 = y + height
                    # face=img[x:x2,y:y2]
                    if width >= minsize2select and height >= minsize2select:
                        bboxes.append(bbox)
                        bnames.append(obj_name)
                        #cv2.rectangle(showimg, (x, y), (x2, y2), (0, 255, 0))
                        # maxl=max(width,height)
                        # x3=(int)(x+(width-maxl)*0.5)
                        # y3=(int)(y+(height-maxl)*0.5)
                        # x4=(int)(x3+maxl)
                        # y4=(int)(y3+maxl)
                        # cv2.rectangle(img,(x3,y3),(x4,y4),(255,0,0))
                    #else:
                        #cv2.rectangle(showimg, (x, y), (x2, y2), (0, 0, 255))
    
    
                #filename = filename.replace("/", "_")
                if len(bboxes) == 0:
                    print ("warrning: no face")
                    continue
    
                cv2.imwrite(imagesdir + "/" + filename, saveimg)
    
                #if convet2yoloformat:
                    #height = saveimg.shape[0]
                    #width = saveimg.shape[1]
                    #txtpath = labelsdir + "/" + filename
                    #txtpath = txtpath[:-3] + "txt"
                    #ftxt = open(txtpath, 'w')
                    #for i in range(len(bboxes)):
                        #bbox = bboxes[i]
                        #xcenter = (bbox[0] + bbox[2] * 0.5) / width
                        #ycenter = (bbox[1] + bbox[3] * 0.5) / height
                        #wr = bbox[2] * 1.0 / width
                        #hr = bbox[3] * 1.0 / height
                        #txtline = "0 " + str(xcenter) + " " + str(ycenter) + " " + str(wr) + " " + str(hr) + "
    "
                        #ftxt.write(txtline)
                    #ftxt.close()
    
    
    
                if convert2vocformat:
                    xmlpath = vocannotationdir + "/" + filename
                    xmlpath = xmlpath[:-3] + "xml"
                    doc = Document()
                    annotation = doc.createElement('annotation')
                    doc.appendChild(annotation)
                    folder = doc.createElement('folder')
                    folder_name = doc.createTextNode('widerface')
                    folder.appendChild(folder_name)
                    annotation.appendChild(folder)
                    filenamenode = doc.createElement('filename')
                    filename_name = doc.createTextNode(filename)
                    filenamenode.appendChild(filename_name)
                    annotation.appendChild(filenamenode)
                    source = doc.createElement('source')
                    annotation.appendChild(source)
                    database = doc.createElement('database')
                    database.appendChild(doc.createTextNode('wider face Database'))
                    source.appendChild(database)
                    annotation_s = doc.createElement('annotation')
                    annotation_s.appendChild(doc.createTextNode('PASCAL VOC2007'))
                    source.appendChild(annotation_s)
                    image = doc.createElement('image')
                    image.appendChild(doc.createTextNode('flickr'))
                    source.appendChild(image)
                    flickrid = doc.createElement('flickrid')
                    flickrid.appendChild(doc.createTextNode('-1'))
                    source.appendChild(flickrid)
                    owner = doc.createElement('owner')
                    annotation.appendChild(owner)
                    flickrid_o = doc.createElement('flickrid')
                    flickrid_o.appendChild(doc.createTextNode('widerFace'))
                    owner.appendChild(flickrid_o)
                    name_o = doc.createElement('name')
                    name_o.appendChild(doc.createTextNode('widerFace'))
                    owner.appendChild(name_o)
                    size = doc.createElement('size')
                    annotation.appendChild(size)
                    width = doc.createElement('width')
                    width.appendChild(doc.createTextNode(str(saveimg.shape[1])))
                    height = doc.createElement('height')
                    height.appendChild(doc.createTextNode(str(saveimg.shape[0])))
                    depth = doc.createElement('depth')
                    depth.appendChild(doc.createTextNode(str(saveimg.shape[2])))
                    size.appendChild(width)
                    size.appendChild(height)
                    size.appendChild(depth)
                    segmented = doc.createElement('segmented')
                    segmented.appendChild(doc.createTextNode('0'))
                    annotation.appendChild(segmented)
    
                    for i in range(len(bboxes)):
                        bbox = bboxes[i]
                        objects = doc.createElement('object')
                        annotation.appendChild(objects)
                        object_name = doc.createElement('name')
                        bnames_var = str(bnames[i])
    
                        object_name.appendChild(doc.createTextNode(bnames_var))
                        objects.appendChild(object_name)
                        pose = doc.createElement('pose')
                        pose.appendChild(doc.createTextNode('Unspecified'))
                        objects.appendChild(pose)
                        truncated = doc.createElement('truncated')
                        truncated.appendChild(doc.createTextNode('1'))
                        objects.appendChild(truncated)
                        difficult = doc.createElement('difficult')
                        difficult.appendChild(doc.createTextNode('0'))
                        objects.appendChild(difficult)
                        bndbox = doc.createElement('bndbox')
                        objects.appendChild(bndbox)
                        xmin = doc.createElement('xmin')
                        xmin.appendChild(doc.createTextNode(str(bbox[0])))
                        bndbox.appendChild(xmin)
                        ymin = doc.createElement('ymin')
                        ymin.appendChild(doc.createTextNode(str(bbox[1])))
                        bndbox.appendChild(ymin)
                        xmax = doc.createElement('xmax')
                        xmax.appendChild(doc.createTextNode(str(bbox[0] + bbox[2])))
                        bndbox.appendChild(xmax)
                        ymax = doc.createElement('ymax')
                        ymax.appendChild(doc.createTextNode(str(bbox[1] + bbox[3])))
                        bndbox.appendChild(ymax)
                    f = open(xmlpath, "w")
                    f.write(doc.toprettyxml(indent=''))
                    f.close()
                    # cv2.imshow("img",showimg)
                # cv2.waitKey()
                index = index + 1
    
    
    def convertdataset():
        img_sets = ["train"]
        for img_set in img_sets:
            convertimgset(img_set)
    
    
    if __name__ == "__main__":
        convertdataset()
  • 相关阅读:
    Adobe Reader XI 自动闪退问题
    NoSQL非关系型数据库Redis (键值对(key-value)数据库) 学习笔记
    MarkdownPad2报错: Html Rendering Error (An error occurred with the Html rendering component.)
    Thymeleaf学习笔记
    Elasticsearch学习笔记2--Spring Data
    Redis5.0学习笔记
    Xshell6 评估期已过——解决办法
    Windows版抓包工具Wireshark3.0
    PHP 判断数据是否为空 ‘0’判断为空可选
    python3 多线程,多进程 ,IO多路复用
  • 原文地址:https://www.cnblogs.com/crazybird123/p/10335462.html
Copyright © 2011-2022 走看看