zoukankan      html  css  js  c++  java
  • 样本标注

    int main()
    {
        std::ifstream fin("D:\Data\MyAnnoData\视频\0.txt");//打开原始样本图片文件列表   
    
        Mat colorImage, detectSquareImg;
        string videoReadPath;
    
        int videoCnt = 0;//视频计数
    
        FILE* f = fopen("F:\videoList.txt", "wt");
        if (f == NULL)
        {
            printf("文件打开失败!
    ");
        }
        else
        {
            printf("文件打开成功!
    ");
        }
    
        while (getline(fin, videoReadPath)) //一行一行读取文件列表  
        {
            videoCnt++;
            string videoPath = videoReadPath;
            cout << videoPath << endl;
    
            VideoCapture capture(videoPath);//读入视频
    
    
            if (!capture.isOpened())//判断是否打开视频文件  
            {
                cout << "video not open..." << endl;
                continue;
            }
            else
            {
                int imgCnt = 0;//图片计数            
                while (1)
                {
                    imgCnt++;
                    cout << imgCnt << endl;
    
                    if (imgCnt % 4 != 0)
                    {
                        continue;
                    }
    
                    capture >> colorImage;//读入图片
                    if (colorImage.empty())
                    {
                        break;
                    }
                    else
                    {
                        if (colorImage.channels() != 3)
                        {
                            cvtColor(colorImage, colorImage, CV_GRAY2BGR);
                        }
    
                        //调用算法进行检测
                        DetectNcnn detectNcnn;
                        int imgheight = colorImage.rows;
                        int    imgwidth = colorImage.cols;
                        int  maxl = imgheight > imgwidth ? imgheight : imgwidth;
                        int    paddingleft = (maxl - imgwidth) >> 1;
                        int    paddingright = (maxl - imgwidth) >> 1;
                        int    paddingbottom = (maxl - imgheight) >> 1;
                        int    paddingtop = (maxl - imgheight) >> 1;
    
                        copyMakeBorder(colorImage, detectSquareImg, paddingtop, paddingbottom, paddingleft, paddingright, cv::BORDER_CONSTANT, 0);
    
                        objects.clear(); classes.clear(); confidences.clear();
    
                        detectNcnn.detectObjNcnn(detectSquareImg.clone(), objects, classes, confidences);
    
                        int cntObject = classes.size();//目标个数,需要写入txt
    
                        string saveImgName = "F:\dmsImg\20190605" + to_string(videoCnt) + "to"+to_string(imgCnt) + ".jpg";
    
                        if (cntObject > 0) //有目标,保存图片,把图片名和图片中目标个数写入txt
                        {
                            fprintf(f, "%s%d%s%d%s", "20190605", videoCnt, "to", imgCnt, ".jpg"); //图片名写入txt
                            fprintf(f, "%s", "
    "); //写入换行
                            fprintf(f, "%d", cntObject);//目标个数写入txt
                            fprintf(f, "%s", "
    "); //写入换行
    
                            imwrite(saveImgName, detectSquareImg);
                        }
    
                        //检测结果分析
                        for (int i = 0; i < classes.size(); i++)
                        {
                            if (classes[i] == ObjectType::EYE)
                            {
                                //把目标名称、xmin,ymin,xmax,ymax写入txt
                                int x = objects[i].x;
                                int y = objects[i].y;
                                int w = objects[i].width;
                                int h = objects[i].height;
    
                                fprintf(f, "%s %d %d %d %d", "eye", x, y, w, h);//写入目标名和目标位置
                                fprintf(f, "%s", "
    "); //写入换行
                            }
    
                            if (classes[i] == ObjectType::CLOSED)
                            {
                                //把目标名称、xmin,ymin,xmax,ymax写入txt
                                int x = objects[i].x;
                                int y = objects[i].y;
                                int w = objects[i].width;
                                int h = objects[i].height;
    
                                fprintf(f, "%s %d %d %d %d", "closed", x, y, w, h);//写入目标名和目标位置
                                fprintf(f, "%s", "
    "); //写入换行
                            }
    
                            if (classes[i] == ObjectType::HAND)
                            {
                                //把目标名称、xmin,ymin,xmax,ymax写入txt
                                int x = objects[i].x;
                                int y = objects[i].y;
                                int w = objects[i].width;
                                int h = objects[i].height;
    
                                fprintf(f, "%s %d %d %d %d", "hand", x, y, w, h);//写入目标名和目标位置
                                fprintf(f, "%s", "
    "); //写入换行
                            }if (classes[i] == ObjectType::MOUTH)
                            {
                                //把目标名称、xmin,ymin,xmax,ymax写入txt
                                int x = objects[i].x;
                                int y = objects[i].y;
                                int w = objects[i].width;
                                int h = objects[i].height;
    
                                fprintf(f, "%s %d %d %d %d", "mouth", x, y, w, h);//写入目标名和目标位置
                                fprintf(f, "%s", "
    "); //写入换行
                            }
                        }
                    }
                }
            }
        }
    
        fclose(f);
        return 0;
    }
    #!/usr/bin/python
    # -*- coding: UTF-8 -*-
    
    import os, h5py, cv2, sys, shutil
    import numpy as np
    from xml.dom.minidom import Document
    
    rootdir = "F:/zidongbiaozhuSample"
    convet2yoloformat = True
    convert2vocformat = True
    #resized_dim = (48, 48)
    
    # 最小取20大小的脸,并且补齐
    minsize2select = 1
    usepadding = True
    
    
    
    def convertimgset(img_set="train"):
        imgdir = rootdir + "/dmsImg"
        gtfilepath = rootdir + "/dms20190605.txt"
    
        #imagesdir = rootdir + "/images"
        vocannotationdir = rootdir + "/dmsXml"
        #labelsdir = rootdir + "/labels"
    
        #if not os.path.exists(imagesdir):
            #os.mkdir(imagesdir)
        #if convet2yoloformat:
            #if not os.path.exists(labelsdir):
                #os.mkdir(labelsdir)
        if convert2vocformat:
            if not os.path.exists(vocannotationdir):
                os.mkdir(vocannotationdir)
    
        index = 0
        with open(gtfilepath, 'r') as gtfile:
            while (True):  # and len(faces)<10
                filename = gtfile.readline()[:-1]
                if (filename == ""):
                    break
                sys.stdout.write("
    " + str(index) + ":" + filename + "			")
                sys.stdout.flush()
                imgpath = imgdir + "/" + filename
                img = cv2.imread(imgpath)
    
                if img is None:
                    bboxCnt = int(gtfile.readline())
                    for i in range(bboxCnt):
                        line_read = gtfile.readline()
                    continue
    
                if not img.data:
                    continue
    
                #imgheight = img.shape[0]
                #imgwidth = img.shape[1]
                #maxl = max(imgheight, imgwidth)
    
                #paddingleft = (maxl - imgwidth) >> 1
                #paddingright = (maxl - imgwidth) >> 1
                #paddingbottom = (maxl - imgheight) >> 1
                #paddingtop = (maxl - imgheight) >> 1
                #saveimg = cv2.copyMakeBorder(img, paddingtop, paddingbottom, paddingleft, paddingright, cv2.BORDER_CONSTANT,value=0)
                #showimg = saveimg.copy()
    
                numbbox = int(gtfile.readline())
                bboxes = []
                bnames=[]
                for i in range(numbbox):
                    line_read = gtfile.readline()
                    line_cor = line_read.strip().split(" ")
                    obj_name = line_cor[0]
                    #line = line_cor[1:5]
                    line = list(map(int,line_cor[1:5]))
    
                    if (int(line[3]) <= 0 or int(line[2]) <= 0):
                        continue
                    #x = int(line[0]) + paddingleft #左上角顶点x
                    x = int(line[0])
                    #y = int(line[1]) + paddingtop #左上角顶点y
                    y = int(line[1])
                    #width = int(line[2]) - int(line[0]) + 1 #宽度
                    width = int(line[2])
                   #height = int(line[3]) - int(line[1])+ 1 #高度
                    height = int(line[3])
                    bbox = (x, y, width, height)
                    #x2 = x + width
                    #y2 = y + height
                    # face=img[x:x2,y:y2]
                    if width >= minsize2select and height >= minsize2select:
                        bboxes.append(bbox)
                        bnames.append(obj_name)
                        #cv2.rectangle(showimg, (x, y), (x2, y2), (0, 255, 0))
                        # maxl=max(width,height)
                        # x3=(int)(x+(width-maxl)*0.5)
                        # y3=(int)(y+(height-maxl)*0.5)
                        # x4=(int)(x3+maxl)
                        # y4=(int)(y3+maxl)
                        # cv2.rectangle(img,(x3,y3),(x4,y4),(255,0,0))
                    #else:
                        #cv2.rectangle(showimg, (x, y), (x2, y2), (0, 0, 255))
    
    
                #filename = filename.replace("/", "_")
                if len(bboxes) == 0:
                    print ("warrning: no face")
                    continue
    
                #cv2.imwrite(imagesdir + "/" + filename, saveimg)
    
                #if convet2yoloformat:
                    #height = saveimg.shape[0]
                    #width = saveimg.shape[1]
                    #txtpath = labelsdir + "/" + filename
                    #txtpath = txtpath[:-3] + "txt"
                    #ftxt = open(txtpath, 'w')
                    #for i in range(len(bboxes)):
                        #bbox = bboxes[i]
                        #xcenter = (bbox[0] + bbox[2] * 0.5) / width
                        #ycenter = (bbox[1] + bbox[3] * 0.5) / height
                        #wr = bbox[2] * 1.0 / width
                        #hr = bbox[3] * 1.0 / height
                        #txtline = "0 " + str(xcenter) + " " + str(ycenter) + " " + str(wr) + " " + str(hr) + "
    "
                        #ftxt.write(txtline)
                    #ftxt.close()
    
    
    
                if convert2vocformat:
                    xmlpath = vocannotationdir + "/" + filename
                    xmlpath = xmlpath[:-3] + "xml"
                    doc = Document()
                    annotation = doc.createElement('annotation')
                    doc.appendChild(annotation)
                    folder = doc.createElement('folder')
                    folder_name = doc.createTextNode('widerface')
                    folder.appendChild(folder_name)
                    annotation.appendChild(folder)
                    filenamenode = doc.createElement('filename')
                    filename_name = doc.createTextNode(filename)
                    filenamenode.appendChild(filename_name)
                    annotation.appendChild(filenamenode)
                    source = doc.createElement('source')
                    annotation.appendChild(source)
                    database = doc.createElement('database')
                    database.appendChild(doc.createTextNode('wider face Database'))
                    source.appendChild(database)
                    annotation_s = doc.createElement('annotation')
                    annotation_s.appendChild(doc.createTextNode('PASCAL VOC2007'))
                    source.appendChild(annotation_s)
                    image = doc.createElement('image')
                    image.appendChild(doc.createTextNode('flickr'))
                    source.appendChild(image)
                    flickrid = doc.createElement('flickrid')
                    flickrid.appendChild(doc.createTextNode('-1'))
                    source.appendChild(flickrid)
                    owner = doc.createElement('owner')
                    annotation.appendChild(owner)
                    flickrid_o = doc.createElement('flickrid')
                    flickrid_o.appendChild(doc.createTextNode('widerFace'))
                    owner.appendChild(flickrid_o)
                    name_o = doc.createElement('name')
                    name_o.appendChild(doc.createTextNode('widerFace'))
                    owner.appendChild(name_o)
                    size = doc.createElement('size')
                    annotation.appendChild(size)
                    width = doc.createElement('width')
                    #width.appendChild(doc.createTextNode(str(saveimg.shape[1])))
                    width.appendChild(doc.createTextNode(str(img.shape[1])))
                    height = doc.createElement('height')
                    #height.appendChild(doc.createTextNode(str(saveimg.shape[0])))
                    height.appendChild(doc.createTextNode(str(img.shape[0])))
                    depth = doc.createElement('depth')
                    #depth.appendChild(doc.createTextNode(str(saveimg.shape[2])))
                    depth.appendChild(doc.createTextNode(str(img.shape[2])))
                    size.appendChild(width)
                    size.appendChild(height)
                    size.appendChild(depth)
                    segmented = doc.createElement('segmented')
                    segmented.appendChild(doc.createTextNode('0'))
                    annotation.appendChild(segmented)
    
                    for i in range(len(bboxes)):
                        bbox = bboxes[i]
                        objects = doc.createElement('object')
                        annotation.appendChild(objects)
                        object_name = doc.createElement('name')
                        bnames_var = str(bnames[i])
    
                        object_name.appendChild(doc.createTextNode(bnames_var))
                        objects.appendChild(object_name)
                        pose = doc.createElement('pose')
                        pose.appendChild(doc.createTextNode('Unspecified'))
                        objects.appendChild(pose)
                        truncated = doc.createElement('truncated')
                        truncated.appendChild(doc.createTextNode('1'))
                        objects.appendChild(truncated)
                        difficult = doc.createElement('difficult')
                        difficult.appendChild(doc.createTextNode('0'))
                        objects.appendChild(difficult)
                        bndbox = doc.createElement('bndbox')
                        objects.appendChild(bndbox)
                        xmin = doc.createElement('xmin')
                        xmin.appendChild(doc.createTextNode(str(bbox[0])))
                        bndbox.appendChild(xmin)
                        ymin = doc.createElement('ymin')
                        ymin.appendChild(doc.createTextNode(str(bbox[1])))
                        bndbox.appendChild(ymin)
                        xmax = doc.createElement('xmax')
                        xmax.appendChild(doc.createTextNode(str(bbox[0] + bbox[2])))
                        bndbox.appendChild(xmax)
                        ymax = doc.createElement('ymax')
                        ymax.appendChild(doc.createTextNode(str(bbox[1] + bbox[3])))
                        bndbox.appendChild(ymax)
                    f = open(xmlpath, "w")
                    f.write(doc.toprettyxml(indent=''))
                    f.close()
                    # cv2.imshow("img",showimg)
                # cv2.waitKey()
                index = index + 1
    
    
    def convertdataset():
        img_sets = ["train"]
        for img_set in img_sets:
            convertimgset(img_set)
    
    
    if __name__ == "__main__":
        convertdataset()
  • 相关阅读:
    SQL2008还原数据库差异备份
    关于串行接口
    SQL Server 2000删除表中的重复记录
    在SQL SERVER 2005创建用户定义函数语法
    C#中的字段与属性
    对SQL数据表和数据库进行迭代操作
    第4章 最简单的C程序设计——顺序程序设计
    走进SQL Server 2005:备份与恢复功能
    ASP.NET中上传下载文件
    Sql常见面试题
  • 原文地址:https://www.cnblogs.com/crazybird123/p/11023154.html
Copyright © 2011-2022 走看看