zoukankan      html  css  js  c++  java
  • faceRect + landmark

    import os
    import json
    import numpy as np
    
    dir_json = 'D:/Data/MyAnnoData/landmarks/20200915/json/'
    dir_txt = 'D:/Data/MyAnnoData/landmarks/20200915/'
    remove_txt = "images/"
    
    if not os.path.exists(dir_txt):
        os.makedirs(dir_txt)
    list_json = os.listdir(dir_json)
    
    ftxt = open(dir_txt+"label.txt",'w+')
    
    for cnt,json_name in enumerate(list_json):
        #print('cnt=%d,name=%s'%(cnt,json_name))
        path_json = dir_json + json_name
        path_txt = dir_txt + json_name.replace('.json','.txt')
        # print(path_json, path_txt)
        path_img = dir_txt + json_name.replace('.json', '.jpg')#图片路径
        remove_path = remove_txt + json_name.replace('.json', '.jpg')#图片路径
        ftxt.writelines("# "+remove_path+"
    ")
    
        with open(path_json, 'r') as path_json:
            jsonx = json.load(path_json)  # json文件信息读入
            rect_add_landmark = ""
            cntPerson = int(len(jsonx['shapes']) / 6)
            saveInfo = ''
    
            flag = 0
            landmarkInfo = ""
            facemaskInfo = ""
    
            for shape in jsonx['shapes']:  # 读取shapes目录
                xy = np.array(shape['points'])  # 读取points信息,五官和人脸框
                typeItem = str(shape['shape_type']) #读取shape_type
    
                if(typeItem == "point"):#点
                    flag+=1
                    if(flag%6==0):
                        flag=1
                    label1 = str(shape['label'])  # 读取label信息
                    if (label1==str(flag)):
                        for i in range(len(xy)):
                            for j in range(len(xy[i])):
                                landmarkInfo += str(xy[i][j]) + ','
                    else:
                        print("label not match...")
                        print(path_img)
                elif (typeItem == "rectangle"):
                    if(flag%5!=0):
                        print("landmark and face error")
                        print(path_img)
    
                    label2 = str(shape['label'])  # 读取label信息
                    if(label2=="face"):
                        for i in range(len(xy)):
                            for j in range(len(xy[i])):
                                facemaskInfo += str(xy[i][j]) + ','
                    elif(label2=="mask"):
                        for i in range(len(xy)):
                            for j in range(len(xy[i])):
                                facemaskInfo += str(xy[i][j]) + ','
    
        facemaskList = facemaskInfo.split(",")
        landmarkList = landmarkInfo.split(",")
    
        #print(facemaskList)
        cutPoint = 0.0
        for i in range(cntPerson):
        #先存储人脸信息
            x = float(facemaskList[i*4])
            y = float(facemaskList[i*4+1])
            w = float(facemaskList[i*4+2]) - float(facemaskList[i*4])
            h = float(facemaskList[i*4+3]) - float(facemaskList[i*4+1])
            ftxt.writelines(str(x) + " ")
            ftxt.writelines(str(y)+ " ")
            ftxt.writelines(str(w)+ " ")
            ftxt.writelines(str(h)+ " ")
    
    
            point1x = str(landmarkList[i * 10])
            point1y = str(landmarkList[i * 10 + 1])
            ftxt.writelines(str(point1x)+ " ")
            ftxt.writelines(str(point1y) + " ")
            ftxt.writelines(str(cutPoint) + " ")
    
            point2x = str(landmarkList[i * 10 + 2])
            point2y = str(landmarkList[i * 10 + 3])
            ftxt.writelines(str(point2x) + " ")
            ftxt.writelines(str(point2y) + " ")
            ftxt.writelines(str(cutPoint) + " ")
    
            point3x = str(landmarkList[i * 10 + 4])
            point3y = str(landmarkList[i * 10 + 5])
            ftxt.writelines(str(point3x) + " ")
            ftxt.writelines(str(point3y) + " ")
            ftxt.writelines(str(cutPoint) + " ")
    
            point4x = str(landmarkList[i * 10 + 6])
            point4y = str(landmarkList[i * 10 + 7])
            ftxt.writelines(str(point4x) + " ")
            ftxt.writelines(str(point4y) + " ")
            ftxt.writelines(str(cutPoint) + " ")
    
            point5x = str(landmarkList[i * 10 + 8])
            point5y = str(landmarkList[i * 10 + 9])
            ftxt.writelines(str(point5x) + " ")
            ftxt.writelines(str(point5y) + " ")
            ftxt.writelines(str(cutPoint) + " ")
            ftxt.writelines(str(cutPoint))
            ftxt.writelines("
    ")
    
    ftxt.close()
    print("end...")




    //显示
    import os
    import cv2

    if __name__ == '__main__':
    #txt_path = r"D:/Detection/Pytorch_Retinaface-master/data/widerface/train/labeltest.txt"
    txt_path = r"F:/FaceLandmarks/widerface/train/labelwider.txt"
    imgs_path = []
    words = []
    f = open(txt_path, 'r')
    lines = f.readlines()
    isFirst = True
    labels = []
    for line in lines:
    line = line.rstrip()
    if line.startswith('#'):
    if isFirst is True:
    isFirst = False
    else:
    labels_copy = labels.copy()
    words.append(labels_copy)
    labels.clear()
    path = line[2:]
    path = txt_path.replace('labelwider.txt', 'imageswider/') + path
    #path = txt_path.replace('/label.txt', '/') + path
    imgs_path.append(path)
    else:
    line = line.split(' ')
    label = [float(x) for x in line]
    labels.append(label)

    words.append(labels)

    print(len(words))
    index = 0
    for index, file in enumerate(imgs_path):
    labels = words[index]
    img_raw = cv2.imread(file)
    for label in labels:
    x1 = int(label[0])
    y1 = int(label[1])
    x2 = int(label[0] + label[2])
    y2 = int(label[1] + label[3])
    if label[4] < 0:
    continue
    # if label[2] * label[3] > 11 * 12:
    # face_num += 1
    else:
    cv2.rectangle(img_raw, (x1, y1), (x2, y2), (0, 255, 0), 3)

    # landmarks
    cv2.circle(img_raw,(int(label[4]),int(label[5])),3,(0,0,255),3)
    cv2.circle(img_raw, (int(label[7]), int(label[8])), 3, (0, 0, 255), 3)
    cv2.circle(img_raw, (int(label[10]), int(label[11])), 3, (0, 0, 255), 3)
    cv2.circle(img_raw, (int(label[13]), int(label[14])), 3, (0, 0, 255), 3)
    cv2.circle(img_raw, (int(label[16]), int(label[17])), 3, (0, 0, 255), 3)
    # if img_raw.shape[0] > 1000:
    # fy = 1000 / img_raw.shape[0]
    # img_raw = cv2.resize(img_raw, (0, 0), fx=fy, fy=fy, interpolation=cv2.INTER_NEAREST)
    cv2.imshow("aaa", img_raw)
    cv2.waitKey()
  • 相关阅读:
    页面实现文件的下载
    微信小程序拉起登录的操作
    css3之border-radius理解
    web前端常用网站--更新中
    小程序中遇见文件过大的话就需要分包
    JS中的“&&”与“&”和“||”“|”有什么区别?
    ts中有时莫名报错
    浏览器解析JavaScript的原理
    在vue中axios的问题
    eslint的规则
  • 原文地址:https://www.cnblogs.com/crazybird123/p/13754090.html
Copyright © 2011-2022 走看看