R语言中的数据重塑是关于变化的数据分为行和列的方式。大多数R地数据处理的时候是通过将输入的数据作为一个数据帧进行。这是很容易提取一个数据帧的行和列数据,但在某些情况,当我们需要的数据帧的格式是不同的来自收到它的格式。 R有许多函数用来分割,合并,改变行列,反之亦然在一个数据帧。
接合列和行中的数据帧
我们可以加入多个向量创建使用 cbind()函数返回数据帧。同时,我们也可以使用 rbind()函数合并两个数据帧。
cbind:重点是将多个向量合并成一个数据帧 和 data.frame 还是有一定的差别(cbind数据都带有双引号,data.frame数据去双引号)
rbind:重点是将多个振进行拼接联在一起,主要是追加和拼接
merge:重点是多个数据帧筛选共同项
melt:主要讲一张表格拆分成多个数据(以列为区分项)表
case:将多行相同数据合并等操作
# Create vector objects.
city <- c("Tampa","Seattle","Hartford","Denver")
state <- c("FL","WA","CT","CO")
zipcode <- c(33602,98104,06161,80294)
# Combine above three vectors into one data frame.
addresses <- cbind(city,state,zipcode)
# Print a header.
cat("# # # # The First data frame
")
# Print the data frame.
print(addresses)
# Create another data frame with similar columns
new.address <- data.frame(
city = c("Lowry","Charlotte"),
state = c("CO","FL"),
zipcode = c("80230","33949"),
stringsAsFactors=FALSE
)
# Print a header.
cat("# # # The Second data frame
")
# Print the data frame.
print(new.address)
# Combine rows form both the data frames.
all.addresses <- rbind(addresses,new.address)
# Print a header.
cat("# # # The combined data frame
")
# Print the result.
print(all.addresses)
当我们上面的代码执行时,它产生以下结果:
# # # # The First data frame
city state zipcode
[1,] "Tampa" "FL" "33602"
[2,] "Seattle" "WA" "98104"
[3,] "Hartford" "CT" "6161"
[4,] "Denver" "CO" "80294"
# # # The Second data frame
city state zipcode
1 Lowry CO 80230
2 Charlotte FL 33949
# # # The combined data frame
city state zipcode
1 Tampa FL 33602
2 Seattle WA 98104
3 Hartford CT 6161
4 Denver CO 80294
5 Lowry CO 80230
6 Charlotte FL 33949
合并数据帧
我们可以通过使用 merge()函数合并两个数据帧。该数据帧必须在其上合并发生相同的列名。
在下面的例子中,我们考虑对皮马印第安人妇女的糖尿病在可用的数据集库名称 "MASS". 我们合并基础血压(“BP”)和身体质量指数(“BMI”)的值,两个数据集。上用于合并选择这两列,其中,这两个变量的值匹配在两个数据集组合在一起的记录,以形成一个单一的数据帧。
library(MASS)
merged.Pima <- merge(x=Pima.te, y=Pima.tr,
by.x=c("bp", "bmi"),
by.y=c("bp", "bmi")
)
print(merged.Pima)
nrow(merged.Pima)
当我们上面的代码执行时,它产生以下结果:
bp bmi npreg.x glu.x skin.x ped.x age.x type.x npreg.y glu.y skin.y ped.y 1 60 33.8 1 117 23 0.466 27 No 2 125 20 0.088 2 64 29.7 2 75 24 0.370 33 No 2 100 23 0.368 3 64 31.2 5 189 33 0.583 29 Yes 3 158 13 0.295 4 64 33.2 4 117 27 0.230 24 No 1 96 27 0.289 5 66 38.1 3 115 39 0.150 28 No 1 114 36 0.289 6 68 38.5 2 100 25 0.324 26 No 7 129 49 0.439 7 70 27.4 1 116 28 0.204 21 No 0 124 20 0.254 8 70 33.1 4 91 32 0.446 22 No 9 123 44 0.374 9 70 35.4 9 124 33 0.282 34 No 6 134 23 0.542 10 72 25.6 1 157 21 0.123 24 No 4 99 17 0.294 11 72 37.7 5 95 33 0.370 27 No 6 103 32 0.324 12 74 25.9 9 134 33 0.460 81 No 8 126 38 0.162 13 74 25.9 1 95 21 0.673 36 No 8 126 38 0.162 14 78 27.6 5 88 30 0.258 37 No 6 125 31 0.565 15 78 27.6 10 122 31 0.512 45 No 6 125 31 0.565 16 78 39.4 2 112 50 0.175 24 No 4 112 40 0.236 17 88 34.5 1 117 24 0.403 40 Yes 4 127 11 0.598 age.y type.y 1 31 No 2 21 No 3 24 No 4 21 No 5 21 No 6 43 Yes 7 36 Yes 8 40 No 9 29 Yes 10 28 No 11 55 No 12 39 No 13 39 No 14 49 Yes 15 49 Yes 16 38 No 17 28 No [1] 17
熔化和转换
R语言编程的最有趣的地方是关于改变多个步骤中的数据的形状来获得所希望的形状。用来做这种函数被称为 melt() 和 cast()。
我们认为数据集被称为 ships 出现在库被称为 "MASS".
library(MASS) print(ships)
当我们上面的代码执行时,它产生以下结果:
type year period service incidents 1 A 60 60 127 0 2 A 60 75 63 0 3 A 65 60 1095 3 4 A 65 75 1095 4 5 A 70 60 1512 6 ............. ............. 8 A 75 75 2244 11 9 B 60 60 44882 39 10 B 60 75 17176 29 11 B 65 60 28609 58 ............ ............ 17 C 60 60 1179 1 18 C 60 75 552 1 19 C 65 60 781 0 ............ ............
融化数据
现在,我们融化数据需要组织其转换类型(type), 并且 year 到多行以外的所有列。
molten.ships <- melt(ships, id = c("type","year"))
print(molten.ships)
当我们上面的代码执行时,它产生以下结果:
type year variable value 1 A 60 period 60 2 A 60 period 75 3 A 65 period 60 4 A 65 period 75 ............ ............ 9 B 60 period 60 10 B 60 period 75 11 B 65 period 60 12 B 65 period 75 13 B 70 period 60 ........... ........... 41 A 60 service 127 42 A 60 service 63 43 A 65 service 1095 ........... ........... 70 D 70 service 1208 71 D 75 service 0 72 D 75 service 2051 73 E 60 service 45 74 E 60 service 0 75 E 65 service 789 ........... ........... 101 C 70 incidents 6 102 C 70 incidents 2 103 C 75 incidents 0 104 C 75 incidents 1 105 D 60 incidents 0 106 D 60 incidents 0 ........... ...........
转换数据
我们可以转化数据转换成在创建每种类型的 ships 每年的汇总的新形式。它是通过使用 case()函数。
recasted.ship <- cast(molten.ships, type+year~variable,sum) print(recasted.ship)
当我们上面的代码执行时,它产生以下结果:
type year period service incidents 1 A 60 135 190 0 2 A 65 135 2190 7 3 A 70 135 4865 24 4 A 75 135 2244 11 5 B 60 135 62058 68 6 B 65 135 48979 111 7 B 70 135 20163 56 8 B 75 135 7117 18 9 C 60 135 1731 2 10 C 65 135 1457 1 11 C 70 135 2731 8 12 C 75 135 274 1 13 D 60 135 356 0 14 D 65 135 480 0 15 D 70 135 1557 13 16 D 75 135 2051 4 17 E 60 135 45 0 18 E 65 135 1226 14 19 E 70 135 3318 17 20 E 75 135 542 1