zoukankan      html  css  js  c++  java
  • ural 1118. Nontrivial Numbers

    1118. Nontrivial Numbers

    Time limit: 2.0 second
    Memory limit: 64 MB
     
    Specialists of SKB Kontur have developed a unique cryptographic algorithm for needs of information protection while transmitting data over the Internet. The main advantage of the algorithm is that you needn't use big numbers as keys; you may easily do with natural numbers not exceeding a million. However, in order to strengthen endurance of the cryptographic system it is recommended to use special numbers - those that psychologically seem least "natural". We introduce a notion of triviality in order to define and emphasize those numbers.
    Triviality of a natural number N is the ratio of the sum of all its proper divisors to the number itself. Thus, for example, triviality of the natural number 10 is equal to 0.8 = (1 + 2 + 5) / 10 and triviality of the number 20 is equal to 1.1 = (1 + 2 + 4 + 5 + 10) / 20. Recall that a proper divisor of a natural number is the divisor that is strictly less than the number.
    Thus, it is recommended to use as nontrivial numbers as possible in the cryptographic protection system of SKB Kontur. You are to write a program that will find the less trivial number in a given range.

    Input

    The only line contains two integers I and J, 1 ≤ IJ ≤ 106, separated with a space.

    Output

    Output the only integer N satisfying the following conditions:
    1. INJ;
    2. N is the least trivial number among the ones that obey the first condition.

    Sample

    inputoutput
    24 28
    
    25
    

    Problem Author: Leonid Volkov
    Problem Source: USU Open Collegiate Programming Contest October'2001 Junior Session

    题目描述:在区间a  <= k <= b,  triviality(k) = (Σ(k的因子) - k)/k, 求k使得triviality(k)最小

    思路:(1)如果a = 1, 最小的是1,triviality(1) = 0

         (2)如果区间内有素数, 那么取值当然是最大的素数了;

             (3)打个素数表暴力判断。。

     1 #include <iostream>
     2 #include <sstream>
     3 #include <fstream>
     4 #include <string>
     5 #include <vector>
     6 #include <deque>
     7 #include <queue>
     8 #include <stack>
     9 #include <set>
    10 #include <map>
    11 #include <algorithm>
    12 #include <functional>
    13 #include <utility>
    14 #include <bitset>
    15 #include <cmath>
    16 #include <cstdlib>
    17 #include <ctime>
    18 #include <cstdio>
    19 #include <string>
    20 using namespace std;
    21 int N, T;
    22 const int M = 1e6+5;
    23 bool a[M];
    24 int prime[M];
    25 int cnt = 0;
    26 void init() {
    27     for(int i = 2; i < M; i++) a[i] = true;
    28     for(int i = 2; i < M; i++) {
    29         if(a[i]) {
    30             cnt++;
    31             prime[cnt] = i;
    32         }
    33         for(int j = 1; j <= cnt; j++) {
    34             if(i * prime[j] >= M) break;
    35             a[i*prime[j]] = false;
    36             if(i % prime[j] == 0) break;
    37         }
    38     }
    39 }
    40 int main() {
    41     //freopen("in.txt", "r", stdin);
    42     init();
    43     int r, l;
    44     scanf("%d%d", &l, &r);
    45     double s = 1e9;
    46     int res = 0;
    47     for(int k = r; k >= l; k--) {
    48         if(a[k]) {
    49             res = k;
    50             break;
    51         }
    52     }
    53     if(l == 1) printf("1
    ");
    54     else if(res > 0) printf("%d
    ", res);
    55     else {
    56         for(int k = l; k <= r; k++) {
    57             double sum = 1;
    58             int i;
    59             for(i = 2; i*i < k; i++) {
    60                 if(k%i == 0) {
    61                     sum += i + k/i;
    62                 }
    63             }
    64             if(i*i == k) sum += i;
    65             if(sum/k < s) {
    66                 s = sum/k;
    67                 res = k;
    68             }
    69         }
    70         printf("%d
    ", res);
    71     }
    72     return 0;
    73 }

      

  • 相关阅读:
    JavaScript 深入之从原型到原型链
    js重写内置的call、apply、bind
    js中flat方法的实现原理
    【我的物联网成长记6】由浅入深了解NB-IoT【华为云技术分享】
    GO富集分析示例【华为云技术分享】
    华为“方舟编译器”到底是啥?一文看懂TA如何让手机性能再突破【华为云技术分享】
    无码系列-7-代码的语文修养_上篇【华为云技术分享】
    机器学习笔记(一)----基本概念【华为云技术分享】
    性能达到原生 MySQL 七倍,华为云 Taurus 技术解读【华为云技术分享】
    【立即报名】人脸情绪识别案例分享【华为云技术分享】
  • 原文地址:https://www.cnblogs.com/cshg/p/5892423.html
Copyright © 2011-2022 走看看