zoukankan      html  css  js  c++  java
  • uarl2070. Interesting Numbers

    2070. Interesting Numbers

    Time limit: 2.0 second
    Memory limit: 64 MB
     
    Nikolay and Asya investigate integers together in their spare time. Nikolay thinks an integer is interesting if it is a prime number. However, Asya thinks an integer is interesting if the amount of its positive divisors is a prime number (e.g., number 1 has one divisor and number 10 has four divisors).
    Nikolay and Asya are happy when their tastes about some integer are common. On the other hand, they are really upset when their tastes differ. They call an integer satisfying if they both consider or do not consider this integer to be interesting. Nikolay and Asya are going to investigate numbers from segment [L; R] this weekend. So they ask you to calculate the number of satisfying integers from this segment.

    Input

    In the only line there are two integers L and R (2 ≤ LR ≤ 1012).

    Output

    In the only line output one integer — the number of satisfying integers from segment [L; R].

    Samples

    inputoutput
    3 7
    
    4
    
    2 2
    
    1
    
    77 1010
    
    924
    

    题目大意:Nikolay 认为质数有趣; Asya认为一个数的因子个数是质数,那么这个数也是有趣的。

    你统计区间[a, b]内满足Nikolay Asya 都认为有趣或者两个人都认为没趣的数的个数

    思路:(1)每个素数有两个因子肯定满足两个人的兴趣

       (2)那么这个数不是质数并且它的因子个数不是质数才行

    所以减去这个数只满足该数的因子个数为质数而且该数是合数

    对于“正规”的合数, 有多个质因子, 如6的质因子是2,3, 会产生两对(1,6),(2, 3),因子个数为2*n不满足条件

    这是为啥?例如 n= p1a1*p2a2, n的因子个数为(1+a1)*(1+a2)显然不是质数。

    所以我们要探索那些 pk, p为质数,k为整数, 它的因子为(1, p1,p2, p3,,,,pk)共有(k+1)个因子

     1 #include <iostream>
     2 #include <sstream>
     3 #include <fstream>
     4 #include <string>
     5 #include <vector>
     6 #include <deque>
     7 #include <queue>
     8 #include <stack>
     9 #include <set>
    10 #include <map>
    11 #include <algorithm>
    12 #include <functional>
    13 #include <utility>
    14 #include <bitset>
    15 #include <cmath>
    16 #include <cstdlib>
    17 #include <ctime>
    18 #include <cstdio>
    19 #include <cstring>
    20 #define FOR(i, a, b)  for(int i = (a); i <= (b); i++)
    21 #define RE(i, n) FOR(i, 1, n)
    22 #define FORP(i, a, b) for(int i = (a); i >= (b); i--)
    23 #define REP(i, n) for(int i = 0; i <(n); ++i)
    24 #define SZ(x) ((int)(x).size )
    25 #define ALL(x) (x).begin(), (x.end())
    26 #define MSET(a, x) memset(a, x, sizeof(a))
    27 using namespace std;
    28 
    29 int N, T;
    30 const int MAXN = 1000006;
    31 bool a[MAXN];
    32 long long cnt, prime[MAXN];
    33 void init(){
    34     cnt = 0;
    35     for(int i = 2; i < MAXN; i++) a[i] = true;
    36     for(int i = 2; i < MAXN; i++){
    37         if(a[i]){
    38             prime[++cnt] = i;
    39         }
    40         for(int j = 1; j <= cnt; j++){
    41             if(i*prime[j] >= MAXN) break;
    42             a[i*prime[j]] = false;
    43             if(i%prime[j] == 0) break;
    44         }
    45     }
    46 }
    47 long long int slove(long long int x){
    48     int res = 0;
    49     for(int i = 1; i <= cnt; i++){
    50         long long tmp = prime[i]*prime[i];
    51         //printf("%I64d ", tmp);
    52         int k = 2;
    53         for(;tmp <= x; tmp = tmp*prime[i],k++){
    54             if(tmp <= x && a[k+1]){
    55                 res++;
    56                 //printf("%I64d ", tmp);
    57             }
    58             if(tmp > x) break;
    59         }
    60     }
    61     return x - res;
    62 }
    63 int main() {
    64     //freopen("in.txt", "r", stdin);
    65     init();
    66     long long int n, m;
    67     scanf("%I64d%I64d", &n, &m);
    68     printf("%I64d", slove(m) - slove(n-1));
    69     return 0;
    70 }
  • 相关阅读:
    2.5星|《无条件增长》:管理学常识+一些自己的管理案例
    3.5星|《壹棉壹世界》:棉花引发罪恶的黑奴贸易,影响美国南北战争
    只运行一个exe应用程序的使用案例
    WPF中使用WPFMediaKit视频截图案例
    Meta http-equiv属性详解
    层级数据模板 案例(HierarchicalDataTemplateWindow)
    ApplicationCommands 应用程序常见命令
    mvvm command的使用案例
    MatserDetail自动展开
    键盘焦点和逻辑焦点(Logic Focus与Keyboard Focus )
  • 原文地址:https://www.cnblogs.com/cshg/p/5892593.html
Copyright © 2011-2022 走看看