zoukankan      html  css  js  c++  java
  • Codeforces Round #278 (Div. 1) Strip RMQ

    B. Strip
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Alexandra has a paper strip with n numbers on it. Let's call them ai from left to right.

    Now Alexandra wants to split it into some pieces (possibly 1). For each piece of strip, it must satisfy:

    • Each piece should contain at least l numbers.
    • The difference between the maximal and the minimal number on the piece should be at most s.

    Please help Alexandra to find the minimal number of pieces meeting the condition above.

    Input

    The first line contains three space-separated integers n, s, l (1 ≤ n ≤ 105, 0 ≤ s ≤ 109, 1 ≤ l ≤ 105).

    The second line contains n integers ai separated by spaces ( - 109 ≤ ai ≤ 109).

    Output

    Output the minimal number of strip pieces.

    If there are no ways to split the strip, output -1.

    Examples
    Input
    7 2 2
    1 3 1 2 4 1 2
    Output
    3
    Input
    7 2 2
    1 100 1 100 1 100 1
    Output
    -1
    Note

    For the first sample, we can split the strip into 3 pieces: [1, 3, 1], [2, 4], [1, 2].

    For the second sample, we can't let 1 and 100 be on the same piece, so no solution exists.

    题目大意:让你把一个序列分几段,每段的最大值和最小值之差不超过s, 该段的长度也必须大于等于l,问你最少能分成几段?

    这当题当然是要dp啦!反正我没想出来怎么划分。这题真是很棒!

    首先给出dp公式 dp[i] = min{dp[j]+1, dp[i]}, i-j >= l && max{j+1~i}-min{j+1,~i}<= s

    满足这个条件就可以dp了!用rmq求最大最小的差值, 双指针维护左右两个点i,j序列。

    #include <bits/stdc++.h>
    
    using namespace std;
    const int MAXN = 100005;
    const int INF = 0x3f3f3f3f;
    int f[MAXN][20], g[MAXN][20], a[MAXN], dp[MAXN];
    int n, q;
    void Rmq() {
        int lg = floor(log10(double(n))/log10(double(2)));
        for(int j = 1; j <= lg; ++j) {
            for(int i = 1; i <= n+1-(1<<j); ++i) {
                g[i][j] = max(g[i][j-1], g[i+(1<<(j-1))][j-1]);
                f[i][j] = min(f[i][j-1], f[i+(1<<(j-1))][j-1]);
            }
        }
    }
    int query(int a, int b) {
    
        int lg = floor(log10(double(b-a+1))/log10(double(2)));
        return max(g[a][lg], g[b-(1<<lg)+1][lg])
               -  min(f[a][lg], f[b-(1<<lg)+1][lg]);
    }
    int main() {
        int l, s;
        scanf("%d%d%d", &n, &s, &l);
        for(int i = 1; i <= n; i++) {
            scanf("%d", &a[i]);
            f[i][0] = g[i][0] = a[i];
            dp[i] = INF;
        }
        Rmq();
        dp[0] = 0;
        int pre = 0;
        for(int i = l; i <= n; i++) {
            while((i-pre >= l && query(pre+1, i) > s )|| dp[pre] == INF) pre++;
            printf("%d %d
    ", pre, i);
            if(i - pre >= l)
                dp[i] = min(dp[pre]+1, dp[i]);
        }
        if(dp[n] == INF) printf("-1
    ");
        else printf("%d
    ", dp[n]);
        return 0;
    }
    View Code
  • 相关阅读:
    DAY 57 django12
    韦东山网课https://edu.csdn.net/course/play/207/1117
    关于初始化
    软件——机器学习与Python,Python3的输出与输入
    关于python中数组的问题,序列格式转换
    偏最小二乘法
    数据标准化
    SD卡与tf卡引脚转换
    程序心得
    牛客网 python 求解立方根
  • 原文地址:https://www.cnblogs.com/cshg/p/6618872.html
Copyright © 2011-2022 走看看