View Code
1 // Kruskal算法.cpp : 定义控制台应用程序的入口点。 2 // 3 4 #include "stdafx.h" 5 #include <queue> 6 #include <string> 7 #include <iostream> 8 using namespace std; 9 #define Infinity 1000 10 #define Max 20 11 typedef int ElemType; 12 typedef unsigned int EdgeType; 13 typedef int DisjSet; 14 typedef int SetType; 15 struct Edge 16 { 17 ElemType From; 18 ElemType To; 19 EdgeType Weight; 20 friend bool operator> (Edge e1,Edge e2) 21 { 22 return e1.Weight>e2.Weight; 23 } 24 }; 25 26 27 struct Graphic //图结构 28 { 29 int Arc; 30 int Vex; 31 Edge EdgeNode[Max];//边数组 32 // ElemType VexNode[Max]; 33 DisjSet S[Max]; //不相交集合数组 34 35 }; 36 typedef struct Graphic* Graph; 37 38 priority_queue<Edge,vector<Edge>,greater<Edge> > EQ; //优先级队列 39 40 void SetUnion(DisjSet S[],SetType Root1,SetType Root2) //不相交集合的合并 41 { 42 S[Root2]=Root1; 43 } 44 45 SetType Find(ElemType X,DisjSet S[]) //不相交集合的find算法 这里我们采用算法导论的不相交集合find层层上溯 46 { 47 if(S[X]!=X) 48 S[X]=Find(S[X],S); 49 50 return S[X]; 51 52 } 53 54 void ReadGraph(Graph G) //读图函数 55 { 56 int i; 57 for( i=0;i<Max;i++) 58 G->EdgeNode[i].Weight=Infinity; 59 printf("请输入点数和边数: "); 60 scanf("%d%d",&(G->Vex),&(G->Arc)); 61 for( i=0;i<Max;i++) 62 { 63 if(i<G->Vex) 64 G->S[i]=i; 65 else 66 G->S[i]=Infinity; 67 } 68 for( i=0;i<G->Arc;i++) 69 { 70 printf("请输入第%d条边的起点终点和权值:",i+1); 71 scanf("%d%d%u",&(G->EdgeNode[i].From),&(G->EdgeNode[i].To),&(G->EdgeNode[i].Weight)); 72 EQ.push(G->EdgeNode[i]) ; 73 } 74 75 } 76 77 78 void Kruskal(Graph G) 79 { 80 ElemType U,V; 81 Edge e; 82 SetType Uset,Vset; 83 int EdgeAccepted=0; 84 while(EdgeAccepted<G->Vex-1) 85 { 86 e=EQ.top(); //弹出最小边 87 printf("e=%d\n",e.Weight); 88 EQ.pop(); 89 U=e.From; 90 V=e.To; 91 Uset=Find(U,G->S); //查找最小边的起点 92 Vset=Find(V,G->S); //查找最小边的终点 93 if(Uset!=Vset) //不相交集合的合并 94 { 95 EdgeAccepted++; 96 SetUnion(G->S,Uset,Vset); 97 } 98 } 99 for(int i=0;i<G->Vex;i++) 100 printf("G->S[%d]=%d \n",i,G->S[i]); 101 } 102 103 104 105 106 int _tmain(int argc, _TCHAR* argv[]) 107 { 108 Graph G=(Graph)malloc(sizeof(struct Graphic)); 109 ReadGraph(G); 110 Kruskal(G); 111 112 return 0; 113 }