n个区间,m种点,每种点有ci个,如果一个点的范围在一个区间上,那么就可以消耗掉一个区间,问最多可以消耗多少个区间,就是这n个区间中,有多少个可能被抵消掉。
思路:
方法不唯一,首先可以用贪心来做,看到网上说的都是优先队列的解法,我说下我的想法,我是直接sort排序后暴力(其实根本达不到n*m*l的时间复杂度),我先把所有老牛也就是区间按照上端点(***不是他们说的下端点)从小打到排序,然后在把护肤品按照第一个值从小到大排序,然后就是给给每一个护肤品尽可能找到一个点,同时这个点的右端点尽可能的小,为了后面别的护肤品留下更大的机会,下面分析枚举代码
第i个护肤品的第j个和第k只奶牛
for(i = 1 ;i <= m ;i ++)
for(j = 1 ;j <= sp[i].c ;j ++)
{
for(k = 1 ;k <= n ;k ++)
if(!mark[k] && cow[k].l <= sp[i].p && cow[k].r >= sp[i].p)
{
ans ++;
mark[k] = 1;
break;
}
if(k == n + 1) 我个人觉得我加的这个地方可以很好的优化掉很多数据,这么加的
break; 依据是如果第i种护肤品的第j个不能给剩下的奶牛用了,那么第i种
} 的其他的也没用了,直接break
还有就是这个题目可以最大流来做,至于用那种算法,自己随意吧,我用的是DINC,建图比较简单,我不想说了,如果你做过流的话一下就能想到建图了,其实我感觉这个题目用最大流有点悬,但是AC了,因为边的条数可能达到 (2500*2500+5000)* 2 = 12510000。
贪心
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define N 2500 + 10
using namespace std;
typedef struct
{
int l ,r;
}COW;
typedef struct
{
int p ,c;
}SP;
COW cow[N];
SP sp[N];
int mark[N];
bool camp1(COW a ,COW b)
{
return a.r < b.r;
}
bool camp2(SP a ,SP b)
{
return a.p < b.p;
}
int main ()
{
int n ,m, i ,j ,k;
while(~scanf("%d %d" ,&n ,&m))
{
for(i = 1 ;i <= n ;i ++)
scanf("%d %d" ,&cow[i].l ,&cow[i].r);
for(i = 1 ;i <= m ;i ++)
scanf("%d %d" ,&sp[i].p ,&sp[i].c);
sort(cow + 1 ,cow + n + 1 ,camp1);
sort(sp + 1 ,sp + m + 1 ,camp2);
memset(mark ,0 ,sizeof(mark));
int ans = 0;
for(i = 1 ;i <= m ;i ++)
for(j = 1 ;j <= sp[i].c ;j ++)
{
for(k = 1 ;k <= n ;k ++)
if(!mark[k] && cow[k].l <= sp[i].p && cow[k].r >= sp[i].p)
{
ans ++;
mark[k] = 1;
break;
}
if(k == n + 1)
break;
}
printf("%d
" ,ans);
}
return 0;
}
DINIC
#include<queue>
#include<stdio.h>
#include<string.h>
#define N_node 2500 + 10
#define N_edge (2500 * 2500 + 5000) * 2 + 100
#define INF 1000000000
using namespace std;
typedef struct
{
int to ,cost ,next;
}STAR;
typedef struct
{
int x ,t;
}DEP;
typedef struct
{
int l ,r;
}COW;
typedef struct
{
int p ,c;
}SP;
COW cow[N_node];
SP sp[N_node];
STAR E[N_edge];
int list[N_node] ,list2[N_node] ,tot;
int deep[N_node];
DEP xin ,tou;
int minn(int x ,int y)
{
return x < y ? x : y;
}
void add(int a ,int b ,int c)
{
E[++tot].to = b;
E[tot].cost = c;
E[tot].next = list[a];
list[a] = tot;
E[++tot].to = a;
E[tot].cost = 0;
E[tot].next = list[b];
list[b] = tot;
}
bool BFS_Deep(int s ,int t ,int n)
{
memset(deep ,255 ,sizeof(deep));
xin.x = s ,xin.t = 0;
deep[xin.x] = xin.t;
queue<DEP>q;
q.push(xin);
while(!q.empty())
{
tou = q.front();
q.pop();
for(int k = list[tou.x] ;k ;k = E[k].next)
{
int to = E[k].to;
if(deep[to] != -1 || !E[k].cost)
continue;
xin.x = to ,xin.t = tou.t + 1;
deep[xin.x] = xin.t;
q.push(xin);
}
}
for(int i = 0 ;i <= n ;i ++)
list2[i] = list[i];
return deep[t] != -1;
}
int DFS_Flow(int s ,int t ,int flow)
{
if(s == t) return flow;
int nowflow = 0;
for(int k = list2[s] ;k ;k = E[k].next)
{
int to = E[k].to;
int c = E[k].cost;
list2[s] = k;
if(deep[to] != deep[s] + 1 || !c)
continue;
int tmp = DFS_Flow(to ,t ,minn(c ,flow - nowflow));
nowflow += tmp;
E[k].cost -= tmp;
E[k^1].cost += tmp;
if(flow == nowflow) break;
}
if(!nowflow) deep[s] = 0;
return nowflow;
}
int DINIC(int s ,int t ,int n)
{
int ans = 0;
while(BFS_Deep(s ,t ,n))
{
ans += DFS_Flow(s ,t ,INF);
}
return ans;
}
int main ()
{
int n ,m, i ,j;
while(~scanf("%d %d" ,&n ,&m))
{
memset(list ,0 ,sizeof(list));
tot = 1;
for(i = 1 ;i <= n ;i ++)
{
scanf("%d %d" ,&cow[i].l ,&cow[i].r);
add(0 ,i ,1);
}
for(i = 1 ;i <= m ;i ++)
{
scanf("%d %d" ,&sp[i].p ,&sp[i].c);
add(i + n ,m + n + 1 ,sp[i].c);
}
for(i = 1 ;i <= n ;i ++)
for(j = 1 ;j <= m ;j ++)
if(cow[i].l <= sp[j].p && cow[i].r >= sp[j].p)
add(i ,j + n ,1);
printf("%d
" ,DINIC(0 ,n + m + 1 ,n + m + 1));
}
return 0;
}