题意:
输入两个整数n,m(1<m<5000,0<n<10000)求最小的k使得m^k是n!的因子。
思路:
比较容易想,一开始手残wa了好几次,我们直接求出m和n!的素数因子和个数就行了,假如s1[a]表示的是n!的素数因子a的个数,s2是m的,则Ans=min(Ans ,s1[a]/s2[a]);这个应该不用解释,很好理解吧!
#include<stdio.h>
#include<string.h>
int Pri[11000] ,pt;
int mark[11000];
int s1[11000] ,s2[11000];
void DBPri()
{
memset(mark ,0 ,sizeof(mark));
mark[1] = 1;
pt = 0;
for(int i = 2 ;i <= 10000 ;i ++)
{
if(!mark[i])
{
Pri[++pt] = i;
for(int j = i + i ;j <= 10000 ;j += i)
mark[j] = 1;
}
}
}
int main ()
{
DBPri();
int t ,cas = 1 ,i ,j ,n ,m;
scanf("%d" ,&t);
while(t--)
{
scanf("%d %d" ,&m ,&n);
memset(s1 ,0 ,sizeof(s1));
for(i = 1 ;i <= n ;i ++)
{
int now = i;
for(j = 1 ;Pri[j] <= now && j <= pt ;j ++)
{
while(now % Pri[j] == 0)
{
now /= Pri[j];
s1[Pri[j]] ++;
}
}
}
memset(s2 ,0 ,sizeof(s2));
int mm = m;
for(i = 1 ;Pri[i] <= mm && i <= pt ;i ++)
if(mm % Pri[i] == 0)
{
while(mm % Pri[i] == 0)
{
s2[Pri[i]] ++;
mm /= Pri[i];
}
}
int Ans = 100000;
for(i = 1 ;Pri[i] <= m && i <= pt ;i ++)
if(m % Pri[i] == 0)
{
if(Ans > s1[Pri[i]] / s2[Pri[i]])
Ans = s1[Pri[i]] / s2[Pri[i]];
}
printf("Case %d:
" ,cas ++);
if(Ans == 0) printf("Impossible to divide
");
else printf("%d
" ,Ans);
}
return 0;
}