zoukankan      html  css  js  c++  java
  • hdu4998 旋转坐标系

    题意:
          一开始的时候有一个坐标系(正常的),然后有n个操作,每个操作是 x y d,意思是当前坐标系围绕x,y点逆时针旋转d度,最后让你输出三个数x y d,把这n个操作的最后结果,用一步等效过来,就是找到一个点,逆时针旋转一个度数,等于当前的这个状态。

    思路:

          我们可以用一个向量来代表当前坐标系,每次操作把当前向量拆成两个点单独操作,假如当前向量a,b,绕点c旋转d度,那么我们可以等效向量c,a逆时针旋转d,然后向量c,b逆时针旋转d,这样就的到了两个新的向量,此时我们要根据这两个新的向量求出当前这两个点的新位置,然后再用当前的新位置和下一组操作,最后得到了最终的一个向量,现在我们只要求出初始向量和最终向量的转换关系就行了,这个地方首先我们求转换点,求法是两个向量的x,x'连线,y.y'连线,两条线段中垂线的交点,求出交点之后再用余弦定理求出夹角,然后在用向量的关系来判断要不要用2PI-当前度数,具体看代码。


    #include<math.h>
    #include<algorithm>
    #include<stdio.h>
    #define maxn 60
    #define eps 1e-7
    #define PP (3.141592653589793238)
    using namespace std;
    
    int dcmp(double x)    
    {
        if(fabs(x)<eps) return 0;
        else return x<0?-1:1;
    }
    double toRad(double deg)   
    {
        return deg/180.0*acos(-1.0);
    }
    struct Point
    {
        double x,y;
        Point(){}
        Point(double x,double y):x(x),y(y) {}
        void input()
        {
            scanf("%lf %lf",&x,&y);
        }
    };
    typedef Point Vector;
    
    Vector operator+( Vector A, Vector B )      
    {
        return Vector( A.x + B.x, A.y + B.y );
    }
    Vector operator-(Vector A,Vector B)      
    {
        return Vector( A.x - B.x, A.y - B.y );
    }
    Vector operator*( Vector A, double p )     
    {
        return Vector( A.x * p, A.y * p );
    }
    Vector operator/( Vector A, double p )      
    {
        return Vector( A.x / p, A.y / p );
    }
    bool operator<(const Point& A, const Point& B )   
    {
        return dcmp( A.x - B.x ) < 0 || ( dcmp( A.x - B.x ) == 0 && dcmp( A.y - B.y ) < 0 );
    }
    bool operator==( const Point& a, const Point& b )   
    {
        return dcmp( a.x - b.x ) == 0 && dcmp( a.y - b.y ) == 0;
    }
    struct Line
    {
        Point s,e;
        Vector v;
        Line() {}
        Line(Point s,Point v,int type):
            s(s),v(v){}
        Line(Point s,Point e):s(s),e(e)
        {v=e-s;}
    
    };
    double Dot(Vector A,Vector B)
    {
        return A.x*B.x+A.y*B.y;
    }
    double Length(Vector A)
    {
        return sqrt(Dot(A,A));
    }
    double Angle(Vector A,Vector B)
    {
        return acos(Dot(A,B)/Length(A)/Length(B));
    }
    double Cross(Vector A,Vector B)
    {
        return A.x*B.y-A.y*B.x;
    }
    double Area2(Point A,Point B,Point C )
    {
        return Cross(B-A,C-A);
    }
    double Dist(Point A,Point B)
    {
        return Length(A-B);
    }
    Vector Rotate(Vector A, double rad)
    {
        return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
    }
    Vector Normal(Vector A)
    {
        double L=Length(A);
        return Vector(-A.y/L,A.x/L);
    }
    Point GetLineIntersection(Line l1,Line l2)
    {
        Point P=l1.s;
        Vector v=l1.v;
        Point Q=l2.s;
        Vector w=l2.v;
        Vector u=P-Q;
        double t=Cross(w,u)/Cross(v,w);
        return P+v*t;
    }
    double DistanceToLine(Point P,Line L)
    {
        Point A,B;
        A=L.s,B=L.e;
        Vector v1=B-A,v2=P-A;
        return fabs(Cross(v1,v2))/Length(v1);
    }
    double DistanceToSegment(Point P, Line L)
    {
        Point A,B;
        A=L.s,B=L.e;
        if(A==B) return Length(P-A);
        Vector v1=B-A,v2=P-A,v3=P-B;
        if (dcmp(Dot(v1,v2))<0) return Length(v2);
        else if (dcmp(Dot(v1,v3))>0) return Length(v3);
        else return fabs(Cross(v1,v2)) / Length(v1);
    }
    Point GetLineProjection(Point P,Line L)
    {
        Point A,B;
        A=L.s,B=L.e;
        Vector v=B-A;
        return A+v*(Dot(v,P-A)/Dot(v,v));
    }
    
    double abss(double x)
    {
       return x < 0 ? -x : x;
    }
    
    
    bool OnSegment(Point p,Line l)
    {
        Point a1=l.s;
        Point a2=l.e;
        return dcmp(Cross(a1-p,a2-p))==0&&dcmp(Dist(p,a1)+Dist(p,a2)-Dist(a1,a2))==0;
    }
    bool Paralled(Line l1,Line l2)
    {
        return dcmp(Cross(l1.e-l1.s,l2.e-l2.s))==0;
    }
    bool SegmentProperIntersection(Line l1,Line l2)
    {
        if(Paralled(l1,l2))
        {
            return false;
        }
        Point t=GetLineIntersection(l1,l2);
        if(OnSegment(t,l1))
        {
            return true;
        }
        return false;
    }
    
    int main ()
    {
       double x ,y ,p;
       int T ,n ,i;
       scanf("%d" ,&T);
       while(T--)
       {
          scanf("%d" ,&n);
          double nowx1  = 0 ,nowy1 = 0;
          double nowx2  = 0 ,nowy2 = 101.0;
          double sss = 0;;
          Vector A ,B;
          for(i = 1 ;i <= n ;i ++)
          {
             scanf("%lf %lf %lf" ,&x ,&y ,&p);
             if(p == 0.0 || abss(p - PP * 2) <= 0.00001) continue;
             sss += p;
             A.x = nowx1 - x ,A.y = nowy1 - y;
             B = Rotate(A ,p);
             nowx1 = x + B.x ,nowy1 = y + B.y;
             A.x = nowx2 - x ,A.y = nowy2 - y;
             B = Rotate(A ,p);
             nowx2 = x + B.x ,nowy2 = y + B.y;
          }
          if(nowx1 == 0.0 && nowy1 == 0.0)
          {
              double x4 = nowx2 ,y4 = nowy2;
              double x3 = 0 ,y3 = 0;
              double x1 = 0 ,y1 = 101.0;
              double aaa;
              double tmp = (x4 - x3) * (x1 - x3) + (y4 - y3) * (y1 - y3);
              tmp = tmp / (pow(x4 - x3 ,2.0) + pow(y4 - y3 ,2.0));
              aaa = acos(tmp);
              double q1 = 0 ,q2 = 0;
              if(nowx2 > 0.0) aaa = PP * 2 - aaa;  
              if(abss(aaa - PP * 2) <= 0.00001)aaa = 0;
              printf("%lf %lf %lf
    " ,q1 ,q2 ,aaa);
          }
          else if(nowx2 == 0.0 && nowy2 == 101.0)
          {
              double x4 = nowx1 ,y4 = nowy1;
              double x3 = 0 ,y3 = 101.0;
              double x1 = 0 ,y1 = 0;
              double aaa;
              double tmp = (x4 - x3) * (x1 - x3) + (y4 - y3) * (y1 - y3);
              tmp = tmp / (pow(x4 - x3 ,2.0) + pow(y4 - y3 ,2.0));
              aaa = acos(tmp);
              double q1 = 0 ,q2 = 101.0;
              if(nowx1 < 0) aaa = PP * 2 - aaa;
              if(abss(aaa - PP * 2) <= 0.00001)aaa = 0;
              printf("%lf %lf %lf
    " ,q1 ,q2 ,aaa);
          }
          else
          {   
             Point AA1;
             AA1.x = AA1.y = 0;
             Point BB1;
             BB1.x = nowx1 ,BB1.y = nowy1;    
             Line now1 = Line((AA1 + BB1)/2 ,Normal(AA1 - BB1),1);          
             Point AA2;
             AA2.x = 0 ,AA2.y = 101.0;
             Point BB2;
             BB2.x = nowx2 ,BB2.y = nowy2;
             Line now2 = Line((AA2 + BB2)/2 ,Normal(AA2 - BB2),1);     
             Point now = GetLineIntersection(now1 ,now2);
             double x4 = nowx1 ,y4 = nowy1;
             double x3 = now.x ,y3 = now.y;
             double x1 = 0 ,y1 = 0;
             double aaa;
             double tmp = (x4 - x3) * (x1 - x3) + (y4 - y3) * (y1 - y3);
             tmp = tmp / (pow(x4 - x3 ,2.0) + pow(y4 - y3 ,2.0));
             double x2 ,y2;
             x1 = 0 ,y1 = 101;
             x2 = nowx2 - nowx1 ,y2 = nowy2 - nowy1;
             aaa = acos(tmp);
             if(x1*y2-x2*y1<0) aaa = PP * 2 - aaa;
             printf("%lf %lf %lf
    " ,now.x ,now.y ,aaa);       
         }
       }
       return 0;
    }     
             
    

  • 相关阅读:
    未授权访问漏洞总结
    常见的端口速查
    Memcache未授权访问漏洞利用及修复
    Ubuntu 16.04 LTS安装Docker
    Ubuntu安装Python2+Python3
    不直接登录SharePoint服务器,通过远程直接部署WSP解决方案包
    SharePoint 2010 人员选择器搜索范围的限定
    SharePoint 2010 匿名访问开启后不能访问Allitems.aspx或DisplayForm.aspx
    博主跑路了
    【pwnable.tw】 alive_note
  • 原文地址:https://www.cnblogs.com/csnd/p/12062783.html
Copyright © 2011-2022 走看看