给你n个矩形,然后问你这n个矩形所组成的画面中被覆盖至少两次的面积有多大。
思路:
和1542差距并不是很大,大体上还是离散化+线段树扫面线,不同的地方就是这个题目要求覆盖至少两次,那么假如l1:覆盖一次的区间长度,l2:覆盖至少两次的区间长度, l3:整个区间的长度,并且满足 l1 + l2 = l3,cnt为区间覆盖次数,那么在更新pushup的时候
(1)cnt >= 2 那么l2 = l3 ,l1 = 0
(2)cnt == 1 那么l2 = 左边l1 + 右边l1 + 左边l2 + 右边l2,l1 = l3 - l2
(3)cnt == 0 那么如果是叶子了l1 = l2 = 0,否则正常更新l1=l1左+l1右,l2=l2左+l2右.
#include<stdio.h> #include<string.h> #include<algorithm> #define lson l ,mid ,t << 1 #define rson mid ,r ,t << 1 | 1 #define N_node 10000 using namespace std; typedef struct { double l ,r ,h; int mk; }EDGE; EDGE edge[N_node]; double len1[N_node] ,len2[N_node]; int cnt[N_node]; double tmp[N_node] ,num[N_node]; bool camp(EDGE a ,EDGE b) { return a.h < b.h; } void Pushup(int l ,int r ,int t) { if(cnt[t] >= 2) { len2[t] = num[r] - num[l]; len1[t] = 0; } else if(cnt[t] == 1) { len2[t] = len2[t<<1] + len2[t<<1|1] + len1[t<<1] + len1[t<<1|1]; len1[t] = num[r] - num[l] - len2[t]; } else { if(l + 1 == r) { len2[t] = len1[t] = 0; } else { len2[t] = len2[t<<1] + len2[t<<1|1]; len1[t] = len1[t<<1] + len1[t<<1|1]; } } } void Update(int l ,int r ,int t ,int a ,int b ,int c) { if(a == l && b == r) { cnt[t] += c; Pushup(l ,r ,t); return; } int mid = (l + r) >> 1; if(b <= mid) Update(lson ,a ,b ,c); else if(a >= mid) Update(rson ,a ,b ,c); else { Update(lson ,a ,mid ,c); Update(rson ,mid ,b ,c); } Pushup(l ,r ,t); } int search_2(int id ,double now) { int low = 1 ,up = id ,mid ,ans; while(low <= up) { mid = (low + up) >> 1; if(now <= num[mid]) { ans = mid; up = mid - 1; } else low = mid + 1; } return ans; } int main () { int t ,i ,id ,n; double x1 ,x2 ,y1 ,y2 ,sum; scanf("%d" ,&t); while(t--) { scanf("%d" ,&n); for(id = 0 ,i = 1 ;i <= n ;i ++) { scanf("%lf %lf %lf %lf" ,&x1 ,&y1 ,&x2 ,&y2); edge[++id].l = x1; edge[id].r = x2 ,edge[id].h = y1 ,edge[id].mk = 1; tmp[id] = x1; edge[++id].l = x1; edge[id].r = x2 ,edge[id].h = y2 ,edge[id].mk = -1; tmp[id] = x2; } sort(tmp + 1 ,tmp + id + 1); sort(edge + 1 ,edge + id + 1 ,camp); for(id = 0 ,i = 1 ;i <= n * 2 ;i ++) if(i == 1 || tmp[i] != tmp[i-1]) num[++id] = tmp[i]; memset(cnt ,0 ,sizeof(cnt)); memset(len1 ,0 ,sizeof(len1)); memset(len2 ,0 ,sizeof(len2)); edge[0].h = edge[1].h; for(sum = 0 ,i = 1 ;i <= n * 2 ;i ++) { sum += len2[1] * (edge[i].h - edge[i-1].h); int l = search_2(id ,edge[i].l); int r = search_2(id ,edge[i].r); Update(1 ,id ,1 ,l ,r ,edge[i].mk); } printf("%.2lf " ,sum); } return 0; }