给你一个图,让你送起点走到终点,至少经过k条边,问你最短路径是多少....
思路:
把每个点拆成50点,记为dis[i][j] (i 1---50 ,j 1---n);代表走到第j个点做过i条边时的最短距离,因为做多五十条边,如果走的过程中,边数大于50直接等于50,因为大于50的时候就没有必要走"回头路"了...然后跑完spfa后在dis[i][t](i = k---50)中取一个最小的输出来,就行了...
#include<stdio.h> #include<string.h> #include<queue> #define N_node 5000 + 100 #define N_edge 200000 + 1000 #define inf 100000000 using namespace std; typedef struct { int to ,next ,cost; }STAR; typedef struct { int x ,t; }NODE; int s_x[55][N_node] ,n ,m ,s ,t; int mark[55][N_node]; int list[N_node] ,tot; NODE xin ,tou; STAR E[N_edge]; void add(int a ,int b ,int c) { E[++tot].to = b; E[tot].cost = c; E[tot].next = list[a]; list[a] = tot; } void SPFA() { for(int i = 0 ;i <= 52 ;i ++) for(int j = 1 ;j <= n ;j ++) s_x[i][j] = inf; // printf("%d %d " ,s_x[1][3] ,s_x[1][2]); s_x[0][s] = 0; xin.x = s; xin.t = 0; queue<NODE>q; q.push(xin); memset(mark ,0 ,sizeof(mark)); mark[0][s] = 1; while(!q.empty()) { tou = q.front(); q.pop();
mark[tou.t][tou.x] = 0;
for(int k = list[tou.x] ;k ;k = E[k].next)
{
xin.x = E[k].to;
xin.t = tou.t + 1;
if(xin.t > 50) xin.t = 50;
//printf("%d %d %d %d
" ,s_x[xin.t][xin.x] ,s_x[tou.t][tou.x] + E[k].cost ,xin.t ,xin.x);
if(s_x[xin.t][xin.x] > s_x[tou.t][tou.x] + E[k].cost)
{
s_x[xin.t][xin.x] = s_x[tou.t][tou.x] + E[k].cost;
if(!mark[xin.t][xin.x])
{
mark[xin.t][xin.x] = 1;
q.push(xin);
}
}
}
}
}
int main ()
{
int m ,a ,b ,c ,k ,i;
while(~scanf("%d %d" ,&n ,&m))
{
memset(list ,0 ,sizeof(list));
tot = 1;
for(i = 1 ;i <= m ;i ++)
{
scanf("%d %d %d" ,&a ,&b ,&c);
add(a ,b ,c);
add(b ,a ,c);
}
scanf("%d %d %d" ,&s ,&t ,&k);
SPFA();
int ans = inf;
k = (k + 9)/10;
for(i = k ;i <= 50 ;i ++)
if(ans > s_x[i][t])
ans = s_x[i][t];
if(ans == inf) ans = -1;
printf("%d
" ,ans);
}
return 0;
}