Segment set |
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) |
Total Submission(s): 120 Accepted Submission(s): 54 |
|
Problem Description
A segment and all segments which are connected with it compose a
segment set. The size of a segment set is the number of segments in it.
The problem is to find the size of some segment set.
![]() |
Input
In the first line there is an integer t - the number of test
case. For each test case in first line there is an integer n
(n<=1000) - the number of commands.
There are two different commands described in different format shown below: P x1 y1 x2 y2 - paint a segment whose coordinates of the two endpoints are (x1,y1),(x2,y2). Q k - query the size of the segment set which contains the k-th segment. k is between 1 and the number of segments in the moment. There is no segment in the plane at first, so the first command is always a P-command. |
Output
For each Q-command, output the answer. There is a blank line between test cases. |
Sample Input
1 10 P 1.00 1.00 4.00 2.00 P 1.00 -2.00 8.00 4.00 Q 1 P 2.00 3.00 3.00 1.00 Q 1 Q 3 P 1.00 4.00 8.00 2.00 Q 2 P 3.00 3.00 6.00 -2.00 Q 5 |
Sample Output
1 2 2 2 5 |
Author
LL
|
思路:就是判断当前线段与以前的线段是否相交且是否为同一集合,并查集很简单,就是计算几何我还不懂,网上找了个写的不错的贴出来(他考虑到了浮点误差!!)
1 #include<stdio.h> 2 #include<iostream> 3 #include<string.h> 4 using namespace std; 5 6 const double eps = 1e-12; 7 const int size = 1000; 8 9 struct point 10 { 11 double x, y; 12 }; 13 14 struct seg 15 { 16 point a, b; 17 } S[size + 20]; 18 19 double multi ( point p1, point p2,point p0) 20 { 21 return (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y); 22 } 23 24 bool isIntersected(point s1, point e1, point s2, point e2) 25 { 26 if( 27 (max(s1.x, e1.x) >= min(s2.x, e2.x)) && 28 (max(s2.x, e2.x) >= min(s1.x, e1.x)) && 29 (max(s1.y, e1.y) >= min(s2.y, e2.y)) && 30 (max(s2.y, e2.y) >= min(s1.y, e1.y)) && 31 (multi(s2, e1, s1) * multi(e1, e2, s1) >= -eps) && 32 (multi(s1, e2, s2) * multi(e2, e1, s2) >= -eps) 33 ) return true; 34 35 return false; 36 } 37 38 int father[size + 10], n, rank[size + 10]; 39 40 41 int Find_Set(int x) 42 { 43 if (x != father[x]) 44 { 45 father[x] = Find_Set(father[x]); 46 } 47 return father[x]; 48 } 49 50 void Union(int x, int y) 51 { 52 x = Find_Set(x); 53 y = Find_Set(y); 54 if (x != y) 55 { 56 father[x] = y; 57 } 58 } 59 60 int main() 61 { 62 int t; 63 char ST[2]; 64 scanf("%d", &t); 65 int tt = t; 66 while (t --) 67 { 68 if (t != tt - 1)printf("\n"); 69 scanf("%d", &n); 70 int j = 0; 71 for (int i = 0; i < n; i ++) 72 { 73 scanf("%s", ST); 74 if (ST[0] == 'P') 75 { 76 scanf("%lf%lf%lf%lf", &S[j].a.x, &S[j].a.y, &S[j].b.x, &S[j].b.y); 77 father[j] = j; 78 for (int k = 0; k < j; k ++) 79 { 80 if (isIntersected(S[j].a, S[j].b, S[k].a, S[k].b)) 81 { 82 Union (j, k); 83 } 84 } 85 j ++; 86 } 87 else if (ST[0] == 'Q') 88 { 89 int s, sum = 0; 90 scanf("%d", &s); 91 for (int k = 0; k < j; k ++) 92 if (Find_Set(s - 1) == Find_Set(k))sum ++; 93 printf("%d\n", sum); 94 } 95 } 96 97 } 98 return 0; 99 }