zoukankan      html  css  js  c++  java
  • 6.1.8 Pseudoforest

    Pseudoforest

    Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 182 Accepted Submission(s): 85

    Problem Description
    In graph theory, a pseudoforest is an undirected graph in which every connected component has at most one cycle. The maximal pseudoforests of G are the pseudoforest subgraphs of G that are not contained within any larger pseudoforest of G. A pesudoforest is larger than another if and only if the total value of the edges is greater than another one’s.

     

    Input
    The input consists of multiple test cases. The first line of each test case contains two integers, n(0 < n <= 10000), m(0 <= m <= 100000), which are the number of the vertexes and the number of the edges. The next m lines, each line consists of three integers, u, v, c, which means there is an edge with value c (0 < c <= 10000) between u and v. You can assume that there are no loop and no multiple edges.
    The last test case is followed by a line containing two zeros, which means the end of the input.
     

    Output
    Output the sum of the value of the edges of the maximum pesudoforest.
     

    Sample Input
    3 3
    0 1 1
    1 2 1
    2 0 1
    4 5
    0 1 1
    1 2 1
    2 3 1
    3 0 1
    0 2 2
    0 0
     

    Sample Output
    3
    5

    思路:伪森林,详见维基百科,其实就是最短路变成最长路,用kruskal

     1 #include <iostream>
     2 #include <cmath>
     3 #include <cstdio>
     4 #include <algorithm>
     5 #include <cstring>
     6 #include <string>
     7 #include <cstdlib>
     8 using namespace std;
     9 
    10 const int maxn=10010,maxm=100100;
    11 int p[maxn],fn,fto,n,m,ans;
    12 bool f[maxn];
    13 struct qq
    14 {
    15     int n,to,d;
    16     friend bool operator < (qq a,qq b)
    17     {
    18         return a.d>b.d;
    19     }
    20 } e[maxm];
    21 
    22 void close()
    23 {
    24 exit(0);
    25 }
    26 
    27 int getfather(int k)
    28 {
    29     if (p[k]==k)
    30         return k;
    31     p[k]=getfather(p[k]);
    32     return p[k];
    33 }
    34 void work()
    35 {
    36     memset(f,false,sizeof(f));
    37     ans=0;
    38     for (int i=1;i<=m;i++)
    39     {
    40         fn=getfather(e[i].n);
    41         fto=getfather(e[i].to);
    42     //    printf("n:%d fn:%d to:%d fto:%d ans:%d\n",e[i].n,fn,e[i].to,fto,ans);
    43         if (fn==fto)
    44         {
    45             if (not f[fn]) //祖先是同一个,但没有环
    46             {
    47                 ans+=e[i].d;
    48                 f[fn]=true;
    49             }
    50         }
    51         else//没有环,完全可以合并,但要注意有环的赋值
    52         {
    53             if (f[fn] && f[fto])
    54                 continue;
    55             ans+=e[i].d;
    56             if (f[fn] || f[fto])
    57             {
    58                 f[fn]=true;
    59                 f[fto]=true;
    60             }
    61                 p[fn]=fto;
    62         }
    63     }
    64     printf("%d\n",ans);
    65 }
    66 
    67 
    68 void init()
    69 {
    70     while (scanf("%d %d",&n,&m)!=EOF)
    71     {
    72         if (n==0 && m==0) break;
    73         for (int i=0;i<=n;i++)
    74             p[i]=i;
    75         for (int i=1;i<=m;i++)
    76         {
    77             scanf("%d %d %d",&e[i].n,&e[i].to,&e[i].d);
    78         }
    79         sort(e+1,e+m+1);
    80         work();
    81     }
    82 }
    83 
    84 int main ()
    85 {
    86     init();
    87     close();
    88     return 0;
    89 }
  • 相关阅读:
    第二章:变量和简单数据类型
    第四章:操作列表
    第三章:列表简介
    老男孩Day6作业:计算器
    老男孩Day5作业:电子银行购物商城
    老男孩Day4作业:员工信息查询系统
    老男孩Day3作业:工资管理系统
    老男孩Day2作业:购物车程序
    改进地图的vo类
    slam kf
  • 原文地址:https://www.cnblogs.com/cssystem/p/3045999.html
Copyright © 2011-2022 走看看