zoukankan      html  css  js  c++  java
  • 6.1.8 Pseudoforest

    Pseudoforest

    Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 182 Accepted Submission(s): 85

    Problem Description
    In graph theory, a pseudoforest is an undirected graph in which every connected component has at most one cycle. The maximal pseudoforests of G are the pseudoforest subgraphs of G that are not contained within any larger pseudoforest of G. A pesudoforest is larger than another if and only if the total value of the edges is greater than another one’s.

     

    Input
    The input consists of multiple test cases. The first line of each test case contains two integers, n(0 < n <= 10000), m(0 <= m <= 100000), which are the number of the vertexes and the number of the edges. The next m lines, each line consists of three integers, u, v, c, which means there is an edge with value c (0 < c <= 10000) between u and v. You can assume that there are no loop and no multiple edges.
    The last test case is followed by a line containing two zeros, which means the end of the input.
     

    Output
    Output the sum of the value of the edges of the maximum pesudoforest.
     

    Sample Input
    3 3
    0 1 1
    1 2 1
    2 0 1
    4 5
    0 1 1
    1 2 1
    2 3 1
    3 0 1
    0 2 2
    0 0
     

    Sample Output
    3
    5

    思路:伪森林,详见维基百科,其实就是最短路变成最长路,用kruskal

     1 #include <iostream>
     2 #include <cmath>
     3 #include <cstdio>
     4 #include <algorithm>
     5 #include <cstring>
     6 #include <string>
     7 #include <cstdlib>
     8 using namespace std;
     9 
    10 const int maxn=10010,maxm=100100;
    11 int p[maxn],fn,fto,n,m,ans;
    12 bool f[maxn];
    13 struct qq
    14 {
    15     int n,to,d;
    16     friend bool operator < (qq a,qq b)
    17     {
    18         return a.d>b.d;
    19     }
    20 } e[maxm];
    21 
    22 void close()
    23 {
    24 exit(0);
    25 }
    26 
    27 int getfather(int k)
    28 {
    29     if (p[k]==k)
    30         return k;
    31     p[k]=getfather(p[k]);
    32     return p[k];
    33 }
    34 void work()
    35 {
    36     memset(f,false,sizeof(f));
    37     ans=0;
    38     for (int i=1;i<=m;i++)
    39     {
    40         fn=getfather(e[i].n);
    41         fto=getfather(e[i].to);
    42     //    printf("n:%d fn:%d to:%d fto:%d ans:%d\n",e[i].n,fn,e[i].to,fto,ans);
    43         if (fn==fto)
    44         {
    45             if (not f[fn]) //祖先是同一个,但没有环
    46             {
    47                 ans+=e[i].d;
    48                 f[fn]=true;
    49             }
    50         }
    51         else//没有环,完全可以合并,但要注意有环的赋值
    52         {
    53             if (f[fn] && f[fto])
    54                 continue;
    55             ans+=e[i].d;
    56             if (f[fn] || f[fto])
    57             {
    58                 f[fn]=true;
    59                 f[fto]=true;
    60             }
    61                 p[fn]=fto;
    62         }
    63     }
    64     printf("%d\n",ans);
    65 }
    66 
    67 
    68 void init()
    69 {
    70     while (scanf("%d %d",&n,&m)!=EOF)
    71     {
    72         if (n==0 && m==0) break;
    73         for (int i=0;i<=n;i++)
    74             p[i]=i;
    75         for (int i=1;i<=m;i++)
    76         {
    77             scanf("%d %d %d",&e[i].n,&e[i].to,&e[i].d);
    78         }
    79         sort(e+1,e+m+1);
    80         work();
    81     }
    82 }
    83 
    84 int main ()
    85 {
    86     init();
    87     close();
    88     return 0;
    89 }
  • 相关阅读:
    css实现鼠标悬浮字体流光背景模糊效果
    原生JS实现省市区(县)三级联动选择
    多线程的对象锁和类锁
    session、cookie与“记住我的登录状态”的功能的实现
    Java NIO FileVisitor 高效删除文件
    mysql 服务启动失败
    Http 协议详解
    设计模式 之 策略模式
    简单探讨 javascript 闭包
    数据库SQL优化大总结之 百万级数据库优化方案
  • 原文地址:https://www.cnblogs.com/cssystem/p/3045999.html
Copyright © 2011-2022 走看看