zoukankan      html  css  js  c++  java
  • 6.1.8 Pseudoforest

    Pseudoforest

    Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 182 Accepted Submission(s): 85

    Problem Description
    In graph theory, a pseudoforest is an undirected graph in which every connected component has at most one cycle. The maximal pseudoforests of G are the pseudoforest subgraphs of G that are not contained within any larger pseudoforest of G. A pesudoforest is larger than another if and only if the total value of the edges is greater than another one’s.

     

    Input
    The input consists of multiple test cases. The first line of each test case contains two integers, n(0 < n <= 10000), m(0 <= m <= 100000), which are the number of the vertexes and the number of the edges. The next m lines, each line consists of three integers, u, v, c, which means there is an edge with value c (0 < c <= 10000) between u and v. You can assume that there are no loop and no multiple edges.
    The last test case is followed by a line containing two zeros, which means the end of the input.
     

    Output
    Output the sum of the value of the edges of the maximum pesudoforest.
     

    Sample Input
    3 3
    0 1 1
    1 2 1
    2 0 1
    4 5
    0 1 1
    1 2 1
    2 3 1
    3 0 1
    0 2 2
    0 0
     

    Sample Output
    3
    5

    思路:伪森林,详见维基百科,其实就是最短路变成最长路,用kruskal

     1 #include <iostream>
     2 #include <cmath>
     3 #include <cstdio>
     4 #include <algorithm>
     5 #include <cstring>
     6 #include <string>
     7 #include <cstdlib>
     8 using namespace std;
     9 
    10 const int maxn=10010,maxm=100100;
    11 int p[maxn],fn,fto,n,m,ans;
    12 bool f[maxn];
    13 struct qq
    14 {
    15     int n,to,d;
    16     friend bool operator < (qq a,qq b)
    17     {
    18         return a.d>b.d;
    19     }
    20 } e[maxm];
    21 
    22 void close()
    23 {
    24 exit(0);
    25 }
    26 
    27 int getfather(int k)
    28 {
    29     if (p[k]==k)
    30         return k;
    31     p[k]=getfather(p[k]);
    32     return p[k];
    33 }
    34 void work()
    35 {
    36     memset(f,false,sizeof(f));
    37     ans=0;
    38     for (int i=1;i<=m;i++)
    39     {
    40         fn=getfather(e[i].n);
    41         fto=getfather(e[i].to);
    42     //    printf("n:%d fn:%d to:%d fto:%d ans:%d\n",e[i].n,fn,e[i].to,fto,ans);
    43         if (fn==fto)
    44         {
    45             if (not f[fn]) //祖先是同一个,但没有环
    46             {
    47                 ans+=e[i].d;
    48                 f[fn]=true;
    49             }
    50         }
    51         else//没有环,完全可以合并,但要注意有环的赋值
    52         {
    53             if (f[fn] && f[fto])
    54                 continue;
    55             ans+=e[i].d;
    56             if (f[fn] || f[fto])
    57             {
    58                 f[fn]=true;
    59                 f[fto]=true;
    60             }
    61                 p[fn]=fto;
    62         }
    63     }
    64     printf("%d\n",ans);
    65 }
    66 
    67 
    68 void init()
    69 {
    70     while (scanf("%d %d",&n,&m)!=EOF)
    71     {
    72         if (n==0 && m==0) break;
    73         for (int i=0;i<=n;i++)
    74             p[i]=i;
    75         for (int i=1;i<=m;i++)
    76         {
    77             scanf("%d %d %d",&e[i].n,&e[i].to,&e[i].d);
    78         }
    79         sort(e+1,e+m+1);
    80         work();
    81     }
    82 }
    83 
    84 int main ()
    85 {
    86     init();
    87     close();
    88     return 0;
    89 }
  • 相关阅读:
    克如斯卡尔 P1546
    真正的spfa
    第四课 最小生成树 要点
    关于vscode中nullptr未定义
    cmake学习笔记
    python学习笔记
    (BFS 图的遍历) 2906. kotori和迷宫
    (图论基础题) leetcode 997. Find the Town Judge
    (BFS DFS 并查集) leetcode 547. Friend Circles
    (BFS DFS 图的遍历) leetcode 841. Keys and Rooms
  • 原文地址:https://www.cnblogs.com/cssystem/p/3045999.html
Copyright © 2011-2022 走看看