zoukankan      html  css  js  c++  java
  • 7.1.4 Surround the Trees

    ---恢复内容开始---

    Surround the Trees

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 166 Accepted Submission(s): 81

    Problem Description
    There are a lot of trees in an area. A peasant wants to buy a rope to surround all these trees. So at first he must know the minimal required length of the rope. However, he does not know how to calculate it. Can you help him?
    The diameter and length of the trees are omitted, which means a tree can be seen as a point. The thickness of the rope is also omitted which means a rope can be seen as a line.



    There are no more than 100 trees.
     

    Input
    The input contains one or more data sets. At first line of each input data set is number of trees in this data set, it is followed by series of coordinates of the trees. Each coordinate is a positive integer pair, and each integer is less than 32767. Each pair is separated by blank.

    Zero at line for number of trees terminates the input for your program.
     

    Output

                The minimal length of the rope. The precision should be 10^-2.
     

    Sample Input
    9 
    12 7 
    24 9 
    30 5 
    41 9 
    80 7 
    50 87 
    22 9 
    45 1 
    50 7 
    0
     

    Sample Output
    243.06
     

     
    Source
    Asia 1997, Shanghai (Mainland China)

    题意:求凸包

    当点数=1、2、3时分类讨论

    其余的求凸包,我用的是极角排序(按叉积排),跑的慢啊。。

    推荐网站

      1 #include <cmath>
      2 #include <cstdio>
      3 #include <algorithm>
      4 #include <cstring>
      5 #include <cstdlib>
      6 using namespace std;
      7 
      8 typedef double dd;
      9 const int maxn=110;
     10 const dd eps=1E-8;
     11 struct point
     12 {
     13     dd x,y;
     14 };
     15 point p[maxn],st[maxn];
     16 int n,cnt;
     17 dd t,ans,x[maxn],y[maxn],mx,my;
     18 
     19 
     20 void close()
     21 {
     22 exit(0);
     23 }
     24 
     25 int dblcmp(dd t)
     26 {
     27     if (fabs(t)<eps)
     28         return 0;
     29     if (t<0) return -1;
     30     else    return 1;
     31 }
     32 
     33 dd dist(point a,point b)
     34 {
     35     x[1]=fabs(a.x-b.x);
     36     y[1]=fabs(a.y-b.y);
     37     return (x[1]*x[1]+y[1]*y[1]);
     38 }
     39 
     40 dd mul(point a,point b,point c)
     41 {
     42     x[1]=b.x-a.x; y[1]=b.y-a.y;
     43     x[2]=c.x-a.x; y[2]=c.y-a.y;
     44     return (x[1]*y[2]-y[1]*x[2]);
     45 }
     46 
     47 bool cmp(point a,point b)
     48 {
     49     dd t=mul(st[1],a,b);
     50     int j=dblcmp(t);
     51     if (j==0) //共线
     52         return dist(a,st[1])<dist(b,st[1]);
     53     if (j==1)
     54         return true;
     55     else
     56         return false;
     57     return false;
     58 }
     59 
     60 bool judge(point a,point b,point c)
     61 {
     62     dd t=mul(c,b,a);
     63     int j=dblcmp(t);
     64     //j==1 顺时针
     65     if (j==0) return true; //gong xian de ye bu yao
     66     if (j==1) return false;
     67     else    return true;
     68 }
     69 void work()
     70 {
     71     ans=0;
     72     if (n==1) {ans=0;return;}
     73     if (n==2) {ans=sqrt(dist(p[1],p[2]));return;}
     74     if (n==3) {ans=sqrt(dist(p[1],p[2])) + sqrt(dist(p[2],p[3])) + sqrt(dist(p[1],p[3]));return;}
     75     mx=p[1].x;
     76     my=p[1].y;
     77     for (int i=1;i<=n;i++)
     78     {
     79         if ( (my==p[i].y && mx>p[i].x) || my>p[i].y)
     80         {
     81             mx=p[i].x;
     82             my=p[i].y;
     83         }
     84     }
     85     st[1].x=mx;
     86     st[1].y=my;
     87     sort(p+1,p+n+1,cmp);
     88     st[2].x=p[2].x;
     89     st[2].y=p[2].y;
     90     cnt=2;
     91     for (int i=3;i<=n;i++)
     92     {
     93         while (judge(p[i],st[cnt],st[cnt-1]))
     94               cnt--;
     95         cnt++;
     96         st[cnt].x=p[i].x;
     97         st[cnt].y=p[i].y;
     98     }
     99     for (int i=2;i<=cnt;i++)
    100         ans+=sqrt(dist(st[i],st[i-1]));
    101     ans+=sqrt(dist(st[cnt],st[1]));
    102 }
    103 
    104 void init()
    105 {
    106     while (scanf("%d",&n)!=EOF)
    107     {
    108         if (n==0) close();
    109         for (int i=1;i<=n;i++)
    110         {
    111             scanf("%lf %lf",&p[i].x,&p[i].y);
    112         }
    113         work();
    114         printf("%.2lf
    ",ans);
    115     }
    116 }
    117 
    118 int main ()
    119 {
    120     init();
    121     close();
    122     return 0;
    123 }

    http://blog.chinaunix.net/uid-22263887-id-1778926.html

    http://www.cnblogs.com/Booble/archive/2011/03/10/1980089.html#2065991

    http://blog.csdn.net/javasui/article/details/6759777

    http://blog.sina.com.cn/s/blog_87cb8e680100svnd.html

    http://blog.chinaunix.net/uid-22263887-id-1778926.html

    http://www.cnblogs.com/devymex/archive/2010/08/09/1795392.html

  • 相关阅读:
    关于 广义相对论 引力红移 的 一个 疑问
    随便 说说 非欧几何
    收录 几篇 关于 电磁波 麦克斯韦方程 的 文章
    从 广义相对论 看到 “数学陷阱”
    对 广义相对论 的 评价
    收录 几篇 关于 广义相对论 水星进动 的 文章
    关于 1 和 0.999999……
    我对 量子力学 提出了一个 修正,名为 “K氏修正”
    随便记录点 在 贴吧 里 讨论 广义相对论 的 想法
    C#程序员初学Python
  • 原文地址:https://www.cnblogs.com/cssystem/p/3185317.html
Copyright © 2011-2022 走看看