zoukankan      html  css  js  c++  java
  • POJ3696 The Luckiest Number

    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own lucky number L. Now he wants to construct his luckiest number which is the minimum among all positive integers that are a multiple of L and consist of only digit '8'.

    Input

    The input consists of multiple test cases. Each test case contains exactly one line containing L(1 ≤ L ≤ 2,000,000,000).

    The last test case is followed by a line containing a zero.

    Output

    For each test case, print a line containing the test case number( beginning with 1) followed by a integer which is the length of Bob's luckiest number. If Bob can't construct his luckiest number, print a zero.

    Sample Input

    8
    11
    16
    0

    Sample Output

    Case 1: 1
    Case 2: 2
    Case 3: 0

    题解:这种题目一般都是 转化为: num*(10^x-1)/9= L*k

    8*(10^x-1)=9L*k

    设 d=gcd(9L,8)=gcd(8,L)

    p=8/d,q=9L/d;

    则: p*(10^x-1) q*k;

    因为q,p互质,则q|(10^x-1) ,p|k

    则     10^x-1=0(mod q)

    10^x =1(mod q)

    10^x=1(mod 9L/d)

    当q与10互质时10^(oula(q))=1(mod  q)

    因此,字需要枚举其因子即可;
    参考代码:

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<algorithm>
     4 #include<cstring>
     5 using namespace std;
     6 #define clr(a,val) memset(a,val,sizeof(a))
     7 typedef long long ll;
     8 const int INF=0x3f3f3f3f; 
     9 ll L,fac[1010]={0};
    10 inline ll phi(ll x)
    11 {
    12     ll p=x,s=x;
    13     for(ll i=2;i*i<=s;++i)
    14         if(!(x%i))
    15         {
    16             p=p/i*(i-1);
    17             while(!(x%i)) x/=i;
    18         }
    19     if(x>1) p=p/x*(x-1);
    20     return p;
    21 }
    22 
    23 inline void find_factor(ll x)
    24 {
    25     ll s=x;
    26     fac[0]=0;
    27     for(ll i=2;i*i<=s;++i)
    28         if(!(x%i))
    29         {
    30             fac[++fac[0]]=i;
    31             while(!(x%i)) x/=i;
    32         } 
    33     if(x>1) fac[++fac[0]]=x;
    34 }
    35 
    36 inline ll mult(ll a,ll b,ll mod)
    37 {
    38     a%=mod; b%=mod;
    39     ll s=a,sum=0;
    40     while(b)
    41     {
    42         if(b&1)
    43         {
    44             sum+=s;
    45             if(sum>=mod) sum-=mod;
    46         }
    47         b>>=1;s<<=1;
    48         if(s>=mod) s-=mod;
    49     }
    50     return sum;
    51 }
    52 ll power(ll a,ll b,ll mod)
    53 {
    54     ll s=a,sum=1;
    55     while(b)
    56     {
    57         if(b&1) sum=mult(sum,s,mod);
    58         b>>=1;s=mult(s,s,mod);
    59     }
    60     return sum;
    61 }
    62 ll gcd(ll a,ll b) {return b==0? a:gcd(b,a%b);}
    63 int main()
    64 {
    65     int t=0;
    66     while(~scanf("%lld",&L) && L)
    67     {
    68         ++t;
    69         ll m=L/gcd(L,8)*9,p=phi(m),x=p;
    70         if(gcd(m,10)!=1) {printf("Case %d: 0
    ",t);continue;}
    71         find_factor(p);
    72         for(int  i=1;i<=fac[0];++i)
    73         {
    74             while(1)
    75             {
    76                 x/=fac[i];
    77                 if(power(10,x,m)!=1)
    78                 {
    79                     x*=fac[i];
    80                     break;
    81                 }
    82                 else if(x%fac[i]) break;
    83             }
    84         }
    85         printf("Case %d: %lld
    ",t,x);
    86     }
    87     return 0;
    88 } 
    View Code
  • 相关阅读:
    原创frame-relay配置
    iptables详解和练习
    nfs-rpcbind-portmap挂载nfs-network file system
    linux-user-group添加与删除
    cgi-fastcgi-fpm
    lamp介绍
    子签CA以及给别人发CA
    正则表达式
    字符集和字符编码
    C++11新特性
  • 原文地址:https://www.cnblogs.com/csushl/p/10388823.html
Copyright © 2011-2022 走看看