zoukankan      html  css  js  c++  java
  • POJ3696 The Luckiest Number

    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own lucky number L. Now he wants to construct his luckiest number which is the minimum among all positive integers that are a multiple of L and consist of only digit '8'.

    Input

    The input consists of multiple test cases. Each test case contains exactly one line containing L(1 ≤ L ≤ 2,000,000,000).

    The last test case is followed by a line containing a zero.

    Output

    For each test case, print a line containing the test case number( beginning with 1) followed by a integer which is the length of Bob's luckiest number. If Bob can't construct his luckiest number, print a zero.

    Sample Input

    8
    11
    16
    0

    Sample Output

    Case 1: 1
    Case 2: 2
    Case 3: 0

    题解:这种题目一般都是 转化为: num*(10^x-1)/9= L*k

    8*(10^x-1)=9L*k

    设 d=gcd(9L,8)=gcd(8,L)

    p=8/d,q=9L/d;

    则: p*(10^x-1) q*k;

    因为q,p互质,则q|(10^x-1) ,p|k

    则     10^x-1=0(mod q)

    10^x =1(mod q)

    10^x=1(mod 9L/d)

    当q与10互质时10^(oula(q))=1(mod  q)

    因此,字需要枚举其因子即可;
    参考代码:

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<algorithm>
     4 #include<cstring>
     5 using namespace std;
     6 #define clr(a,val) memset(a,val,sizeof(a))
     7 typedef long long ll;
     8 const int INF=0x3f3f3f3f; 
     9 ll L,fac[1010]={0};
    10 inline ll phi(ll x)
    11 {
    12     ll p=x,s=x;
    13     for(ll i=2;i*i<=s;++i)
    14         if(!(x%i))
    15         {
    16             p=p/i*(i-1);
    17             while(!(x%i)) x/=i;
    18         }
    19     if(x>1) p=p/x*(x-1);
    20     return p;
    21 }
    22 
    23 inline void find_factor(ll x)
    24 {
    25     ll s=x;
    26     fac[0]=0;
    27     for(ll i=2;i*i<=s;++i)
    28         if(!(x%i))
    29         {
    30             fac[++fac[0]]=i;
    31             while(!(x%i)) x/=i;
    32         } 
    33     if(x>1) fac[++fac[0]]=x;
    34 }
    35 
    36 inline ll mult(ll a,ll b,ll mod)
    37 {
    38     a%=mod; b%=mod;
    39     ll s=a,sum=0;
    40     while(b)
    41     {
    42         if(b&1)
    43         {
    44             sum+=s;
    45             if(sum>=mod) sum-=mod;
    46         }
    47         b>>=1;s<<=1;
    48         if(s>=mod) s-=mod;
    49     }
    50     return sum;
    51 }
    52 ll power(ll a,ll b,ll mod)
    53 {
    54     ll s=a,sum=1;
    55     while(b)
    56     {
    57         if(b&1) sum=mult(sum,s,mod);
    58         b>>=1;s=mult(s,s,mod);
    59     }
    60     return sum;
    61 }
    62 ll gcd(ll a,ll b) {return b==0? a:gcd(b,a%b);}
    63 int main()
    64 {
    65     int t=0;
    66     while(~scanf("%lld",&L) && L)
    67     {
    68         ++t;
    69         ll m=L/gcd(L,8)*9,p=phi(m),x=p;
    70         if(gcd(m,10)!=1) {printf("Case %d: 0
    ",t);continue;}
    71         find_factor(p);
    72         for(int  i=1;i<=fac[0];++i)
    73         {
    74             while(1)
    75             {
    76                 x/=fac[i];
    77                 if(power(10,x,m)!=1)
    78                 {
    79                     x*=fac[i];
    80                     break;
    81                 }
    82                 else if(x%fac[i]) break;
    83             }
    84         }
    85         printf("Case %d: %lld
    ",t,x);
    86     }
    87     return 0;
    88 } 
    View Code
  • 相关阅读:
    Centos6.5环境中安装vsftp服务
    MySQL数据库的数据备份和恢复(导入和导出)命令操作语法【转】
    linux系统被入侵后处理经历【转】
    Linux lsof命令详解和使用示例【转】
    Oracle 表空间和用户权限管理【转】
    如何在 Linux 中找出最近或今天被修改的文件
    Linux 服务器系统监控脚本 Shell【转】
    1张图看懂RAID功能,6张图教会配置服务器【转】
    简析TCP的三次握手与四次分手【转】
    TCP协议中的三次握手和四次挥手(图解)【转】
  • 原文地址:https://www.cnblogs.com/csushl/p/10388823.html
Copyright © 2011-2022 走看看