zoukankan      html  css  js  c++  java
  • POJ3696 The Luckiest Number

    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own lucky number L. Now he wants to construct his luckiest number which is the minimum among all positive integers that are a multiple of L and consist of only digit '8'.

    Input

    The input consists of multiple test cases. Each test case contains exactly one line containing L(1 ≤ L ≤ 2,000,000,000).

    The last test case is followed by a line containing a zero.

    Output

    For each test case, print a line containing the test case number( beginning with 1) followed by a integer which is the length of Bob's luckiest number. If Bob can't construct his luckiest number, print a zero.

    Sample Input

    8
    11
    16
    0

    Sample Output

    Case 1: 1
    Case 2: 2
    Case 3: 0

    题解:这种题目一般都是 转化为: num*(10^x-1)/9= L*k

    8*(10^x-1)=9L*k

    设 d=gcd(9L,8)=gcd(8,L)

    p=8/d,q=9L/d;

    则: p*(10^x-1) q*k;

    因为q,p互质,则q|(10^x-1) ,p|k

    则     10^x-1=0(mod q)

    10^x =1(mod q)

    10^x=1(mod 9L/d)

    当q与10互质时10^(oula(q))=1(mod  q)

    因此,字需要枚举其因子即可;
    参考代码:

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<algorithm>
     4 #include<cstring>
     5 using namespace std;
     6 #define clr(a,val) memset(a,val,sizeof(a))
     7 typedef long long ll;
     8 const int INF=0x3f3f3f3f; 
     9 ll L,fac[1010]={0};
    10 inline ll phi(ll x)
    11 {
    12     ll p=x,s=x;
    13     for(ll i=2;i*i<=s;++i)
    14         if(!(x%i))
    15         {
    16             p=p/i*(i-1);
    17             while(!(x%i)) x/=i;
    18         }
    19     if(x>1) p=p/x*(x-1);
    20     return p;
    21 }
    22 
    23 inline void find_factor(ll x)
    24 {
    25     ll s=x;
    26     fac[0]=0;
    27     for(ll i=2;i*i<=s;++i)
    28         if(!(x%i))
    29         {
    30             fac[++fac[0]]=i;
    31             while(!(x%i)) x/=i;
    32         } 
    33     if(x>1) fac[++fac[0]]=x;
    34 }
    35 
    36 inline ll mult(ll a,ll b,ll mod)
    37 {
    38     a%=mod; b%=mod;
    39     ll s=a,sum=0;
    40     while(b)
    41     {
    42         if(b&1)
    43         {
    44             sum+=s;
    45             if(sum>=mod) sum-=mod;
    46         }
    47         b>>=1;s<<=1;
    48         if(s>=mod) s-=mod;
    49     }
    50     return sum;
    51 }
    52 ll power(ll a,ll b,ll mod)
    53 {
    54     ll s=a,sum=1;
    55     while(b)
    56     {
    57         if(b&1) sum=mult(sum,s,mod);
    58         b>>=1;s=mult(s,s,mod);
    59     }
    60     return sum;
    61 }
    62 ll gcd(ll a,ll b) {return b==0? a:gcd(b,a%b);}
    63 int main()
    64 {
    65     int t=0;
    66     while(~scanf("%lld",&L) && L)
    67     {
    68         ++t;
    69         ll m=L/gcd(L,8)*9,p=phi(m),x=p;
    70         if(gcd(m,10)!=1) {printf("Case %d: 0
    ",t);continue;}
    71         find_factor(p);
    72         for(int  i=1;i<=fac[0];++i)
    73         {
    74             while(1)
    75             {
    76                 x/=fac[i];
    77                 if(power(10,x,m)!=1)
    78                 {
    79                     x*=fac[i];
    80                     break;
    81                 }
    82                 else if(x%fac[i]) break;
    83             }
    84         }
    85         printf("Case %d: %lld
    ",t,x);
    86     }
    87     return 0;
    88 } 
    View Code
  • 相关阅读:
    ava新手入门详细介绍
    FreeRTOS源代码的编程标准与命名约定
    Java基础学习笔记
    如何提高单片机C语言代码效率
    java三大框架介绍
    Java代码优化六大原则
    单片机C语言基础编程源码六则2
    单片机C语言基础编程源码六则
    Java编程代码性能优化总结
    SAP ALV报表模板
  • 原文地址:https://www.cnblogs.com/csushl/p/10388823.html
Copyright © 2011-2022 走看看