zoukankan      html  css  js  c++  java
  • POJ3696 The Luckiest Number

    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own lucky number L. Now he wants to construct his luckiest number which is the minimum among all positive integers that are a multiple of L and consist of only digit '8'.

    Input

    The input consists of multiple test cases. Each test case contains exactly one line containing L(1 ≤ L ≤ 2,000,000,000).

    The last test case is followed by a line containing a zero.

    Output

    For each test case, print a line containing the test case number( beginning with 1) followed by a integer which is the length of Bob's luckiest number. If Bob can't construct his luckiest number, print a zero.

    Sample Input

    8
    11
    16
    0

    Sample Output

    Case 1: 1
    Case 2: 2
    Case 3: 0

    题解:这种题目一般都是 转化为: num*(10^x-1)/9= L*k

    8*(10^x-1)=9L*k

    设 d=gcd(9L,8)=gcd(8,L)

    p=8/d,q=9L/d;

    则: p*(10^x-1) q*k;

    因为q,p互质,则q|(10^x-1) ,p|k

    则     10^x-1=0(mod q)

    10^x =1(mod q)

    10^x=1(mod 9L/d)

    当q与10互质时10^(oula(q))=1(mod  q)

    因此,字需要枚举其因子即可;
    参考代码:

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<algorithm>
     4 #include<cstring>
     5 using namespace std;
     6 #define clr(a,val) memset(a,val,sizeof(a))
     7 typedef long long ll;
     8 const int INF=0x3f3f3f3f; 
     9 ll L,fac[1010]={0};
    10 inline ll phi(ll x)
    11 {
    12     ll p=x,s=x;
    13     for(ll i=2;i*i<=s;++i)
    14         if(!(x%i))
    15         {
    16             p=p/i*(i-1);
    17             while(!(x%i)) x/=i;
    18         }
    19     if(x>1) p=p/x*(x-1);
    20     return p;
    21 }
    22 
    23 inline void find_factor(ll x)
    24 {
    25     ll s=x;
    26     fac[0]=0;
    27     for(ll i=2;i*i<=s;++i)
    28         if(!(x%i))
    29         {
    30             fac[++fac[0]]=i;
    31             while(!(x%i)) x/=i;
    32         } 
    33     if(x>1) fac[++fac[0]]=x;
    34 }
    35 
    36 inline ll mult(ll a,ll b,ll mod)
    37 {
    38     a%=mod; b%=mod;
    39     ll s=a,sum=0;
    40     while(b)
    41     {
    42         if(b&1)
    43         {
    44             sum+=s;
    45             if(sum>=mod) sum-=mod;
    46         }
    47         b>>=1;s<<=1;
    48         if(s>=mod) s-=mod;
    49     }
    50     return sum;
    51 }
    52 ll power(ll a,ll b,ll mod)
    53 {
    54     ll s=a,sum=1;
    55     while(b)
    56     {
    57         if(b&1) sum=mult(sum,s,mod);
    58         b>>=1;s=mult(s,s,mod);
    59     }
    60     return sum;
    61 }
    62 ll gcd(ll a,ll b) {return b==0? a:gcd(b,a%b);}
    63 int main()
    64 {
    65     int t=0;
    66     while(~scanf("%lld",&L) && L)
    67     {
    68         ++t;
    69         ll m=L/gcd(L,8)*9,p=phi(m),x=p;
    70         if(gcd(m,10)!=1) {printf("Case %d: 0
    ",t);continue;}
    71         find_factor(p);
    72         for(int  i=1;i<=fac[0];++i)
    73         {
    74             while(1)
    75             {
    76                 x/=fac[i];
    77                 if(power(10,x,m)!=1)
    78                 {
    79                     x*=fac[i];
    80                     break;
    81                 }
    82                 else if(x%fac[i]) break;
    83             }
    84         }
    85         printf("Case %d: %lld
    ",t,x);
    86     }
    87     return 0;
    88 } 
    View Code
  • 相关阅读:
    打开任务管理器的hang住的进程直接右键抓取dmp文件
    Excel匯入匯出整理
    ShellExecute 命令行参数最长2068
    一个判断是否为质数的正则表达式
    visualstudio 比较和merge工具命令行配置
    C++ 螺旋队列
    寻找连通线,参考八后算法递归,可用于验证码去除连续干扰线
    DES 加解密
    记个地址
    CF1383C String Transformation 2 题解
  • 原文地址:https://www.cnblogs.com/csushl/p/10388823.html
Copyright © 2011-2022 走看看