zoukankan      html  css  js  c++  java
  • POJ3696 The Luckiest Number

    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own lucky number L. Now he wants to construct his luckiest number which is the minimum among all positive integers that are a multiple of L and consist of only digit '8'.

    Input

    The input consists of multiple test cases. Each test case contains exactly one line containing L(1 ≤ L ≤ 2,000,000,000).

    The last test case is followed by a line containing a zero.

    Output

    For each test case, print a line containing the test case number( beginning with 1) followed by a integer which is the length of Bob's luckiest number. If Bob can't construct his luckiest number, print a zero.

    Sample Input

    8
    11
    16
    0

    Sample Output

    Case 1: 1
    Case 2: 2
    Case 3: 0

    题解:这种题目一般都是 转化为: num*(10^x-1)/9= L*k

    8*(10^x-1)=9L*k

    设 d=gcd(9L,8)=gcd(8,L)

    p=8/d,q=9L/d;

    则: p*(10^x-1) q*k;

    因为q,p互质,则q|(10^x-1) ,p|k

    则     10^x-1=0(mod q)

    10^x =1(mod q)

    10^x=1(mod 9L/d)

    当q与10互质时10^(oula(q))=1(mod  q)

    因此,字需要枚举其因子即可;
    参考代码:

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<algorithm>
     4 #include<cstring>
     5 using namespace std;
     6 #define clr(a,val) memset(a,val,sizeof(a))
     7 typedef long long ll;
     8 const int INF=0x3f3f3f3f; 
     9 ll L,fac[1010]={0};
    10 inline ll phi(ll x)
    11 {
    12     ll p=x,s=x;
    13     for(ll i=2;i*i<=s;++i)
    14         if(!(x%i))
    15         {
    16             p=p/i*(i-1);
    17             while(!(x%i)) x/=i;
    18         }
    19     if(x>1) p=p/x*(x-1);
    20     return p;
    21 }
    22 
    23 inline void find_factor(ll x)
    24 {
    25     ll s=x;
    26     fac[0]=0;
    27     for(ll i=2;i*i<=s;++i)
    28         if(!(x%i))
    29         {
    30             fac[++fac[0]]=i;
    31             while(!(x%i)) x/=i;
    32         } 
    33     if(x>1) fac[++fac[0]]=x;
    34 }
    35 
    36 inline ll mult(ll a,ll b,ll mod)
    37 {
    38     a%=mod; b%=mod;
    39     ll s=a,sum=0;
    40     while(b)
    41     {
    42         if(b&1)
    43         {
    44             sum+=s;
    45             if(sum>=mod) sum-=mod;
    46         }
    47         b>>=1;s<<=1;
    48         if(s>=mod) s-=mod;
    49     }
    50     return sum;
    51 }
    52 ll power(ll a,ll b,ll mod)
    53 {
    54     ll s=a,sum=1;
    55     while(b)
    56     {
    57         if(b&1) sum=mult(sum,s,mod);
    58         b>>=1;s=mult(s,s,mod);
    59     }
    60     return sum;
    61 }
    62 ll gcd(ll a,ll b) {return b==0? a:gcd(b,a%b);}
    63 int main()
    64 {
    65     int t=0;
    66     while(~scanf("%lld",&L) && L)
    67     {
    68         ++t;
    69         ll m=L/gcd(L,8)*9,p=phi(m),x=p;
    70         if(gcd(m,10)!=1) {printf("Case %d: 0
    ",t);continue;}
    71         find_factor(p);
    72         for(int  i=1;i<=fac[0];++i)
    73         {
    74             while(1)
    75             {
    76                 x/=fac[i];
    77                 if(power(10,x,m)!=1)
    78                 {
    79                     x*=fac[i];
    80                     break;
    81                 }
    82                 else if(x%fac[i]) break;
    83             }
    84         }
    85         printf("Case %d: %lld
    ",t,x);
    86     }
    87     return 0;
    88 } 
    View Code
  • 相关阅读:
    python os模块汇总
    python xlsxwriter使用方法汇总
    python 虚拟环境生成requirements.txt 和利用requirements.txt批量安装
    python 中将大列表拆分成小列表
    python print的用法
    python学习
    浮躁
    在线绘图工具
    开通园子
    iOS拓展---(APP)进程间常用通信方式总结
  • 原文地址:https://www.cnblogs.com/csushl/p/10388823.html
Copyright © 2011-2022 走看看