zoukankan      html  css  js  c++  java
  • CoderForces-Round60D(1117) Magic Gems

    D. Magic Gems

    time limit per test
    3 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Reziba has many magic gems. Each magic gem can be split into MM normal gems. The amount of space each magic (and normal) gem takes is 11 unit. A normal gem cannot be split.

    Reziba wants to choose a set of magic gems and split some of them, so the total space occupied by the resulting set of gems is NN units. If a magic gem is chosen and split, it takes MM units of space (since it is split into MM gems); if a magic gem is not split, it takes 11 unit.

    How many different configurations of the resulting set of gems can Reziba have, such that the total amount of space taken is NN units? Print the answer modulo 10000000071000000007 (109+7109+7). Two configurations are considered different if the number of magic gems Reziba takes to form them differs, or the indices of gems Reziba has to split differ.

    Input

    The input contains a single line consisting of 22 integers NN and MM (1N10181≤N≤1018, 2M1002≤M≤100).

    Output

    Print one integer, the total number of configurations of the resulting set of gems, given that the total amount of space taken is NN units. Print the answer modulo 10000000071000000007 (109+7109+7).

    Examples
    input
    Copy
    4 2
    
    output
    Copy
    5
    
    input
    Copy
    3 2
    
    output
    Copy
    3
    

    In the first example each magic gem can split into 22 normal gems, and we know that the total amount of gems are 44.

    Let 11 denote a magic gem, and 00 denote a normal gem.

    The total configurations you can have is:

    • 11111111 (None of the gems split);
    • 00110011 (First magic gem splits into 22 normal gems);
    • 10011001 (Second magic gem splits into 22 normal gems);
    • 11001100 (Third magic gem splits into 22 normal gems);
    • 00000000 (First and second magic gems split into total 44 normal gems).

    Hence, answer is 55.

     题解:

    • 考虑 dpdp , f[i]f[i] 表示用 ii 个单位空间的方案数,答案即为 f[n]f[n].
    • 对于一个位置,我们可以放 MagicMagic 的,占 mm 空间,也可以放 NormalNormal 的,占 11 空间.
    • 转移方程即为 f[i]=f[i1]+f[im]f[i]=f[i−1]+f[i−m] ,边界条件为 f[0]=f[1]=f[2]=f[m1]=1f[0]=f[1]=f[2]=…f[m−1]=1.
    • 直接转移是 O(n)O(n) 的,无法通过,需要矩阵优化.

    也可以用杜教BM,求线性递推式;

    参考代码:(矩阵快速幂)

     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 typedef long long ll;
     4 #define Mod 1000000007
     5 const double PI = acos(-1.0);
     6 const double eps = 1e-6;
     7 const int INF = 0x3f3f3f3f;
     8 const int N = 100 + 5;
     9 struct Matrix {
    10   ll n , m;
    11   ll grid[N][N];
    12   Matrix () { n = m = 0; memset(grid , 0 , sizeof(grid)); }
    13 };
    14 
    15 Matrix mul(Matrix a,Matrix b) 
    16 {
    17     Matrix c;
    18     c.n = a.n;c.m = b.m;
    19     for(ll i=1;i<=c.n;++i)
    20         for(ll j=1;j<=c.m;++j) 
    21         {
    22             ll cnt = 0;
    23             for(ll k=1;k<=a.m;++k) 
    24             {
    25                 c.grid[i][j] = (c.grid[i][j] + a.grid[i][k] * b.grid[k][j]);
    26                 cnt++;
    27                 if(cnt % 8 == 0) c.grid[i][j] %= Mod;
    28             }
    29           c.grid[i][j] %= Mod;
    30         }
    31   return c;
    32 }
    33 Matrix QuickMul(Matrix a ,ll k) 
    34 {
    35     if(k == 1) return a;
    36     Matrix mid = QuickMul(a ,(k >> 1));
    37     if(k & 1) return mul(mul(mid , mid),a);
    38     else return mul(mid , mid);
    39 }
    40 ll n , m;
    41 int main() 
    42 {
    43     cin >> n >> m;
    44     if(n < m) {return puts("1") , 0;}
    45     if(n == m) return puts("2") , 0;
    46     Matrix basic; basic.n = m; basic.m = 1;
    47     for(ll i=1;i<=m;++i) basic.grid[i][1] = (i == m) ? 2 : 1;//{1,1,1...1,m}T
    48     Matrix base; base.n = base.m = m;
    49     
    50     for(ll i = 1; i <= m - 1; i++) base.grid[i][i + 1] = 1;
    51     base.grid[m][1] = base.grid[m][m] = 1;
    52     
    53     Matrix ans = mul(QuickMul(base , n - m) , basic);
    54     cout << ans.grid[m][1] << endl;
    55     return 0;
    56 }
    View Code

    杜教BM

     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 #define rep(i,a,n) for (int i=a;i<n;i++)
     4 #define per(i,a,n) for (int i=n-1;i>=a;i--)
     5 #define pb push_back
     6 #define mp make_pair
     7 #define all(x) (x).begin(),(x).end()
     8 #define fi first
     9 #define se second
    10 #define SZ(x) ((int)(x).size())
    11 typedef vector<int> VI;
    12 typedef long long ll;
    13 typedef pair<int,int> PII;
    14 const ll mod=1000000007;
    15 ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1) { if(b&1)res=res*a%mod; a=a*a%mod;  }  return res;  }
    16 ll _,n,m,dp[321];
    17 namespace linear_seq {
    18     const int N=10010;
    19     ll res[N],base[N],_c[N],_md[N];
    20     vector<ll> Md;
    21     void mul(ll *a,ll *b,int k)
    22     {
    23         rep(i,0,k+k) _c[i]=0;
    24         rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]= (_c[i+j]+a[i]*b[j])%mod;
    25         for (int i=k+k-1;i>=k;i--)  if (_c[i])
    26             rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
    27         rep(i,0,k) a[i]=_c[i];
    28     }
    29     int solve(ll n,VI a,VI b)
    30     {
    31         ll ans=0,pnt=0;
    32         int k=SZ(a);
    33         assert(SZ(a)==SZ(b));
    34         rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
    35         Md.clear();
    36         rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
    37         rep(i,0,k) res[i]=base[i]=0;
    38         res[0]=1;
    39         while ((1ll<<pnt)<=n) pnt++;
    40         for (int p=pnt;p>=0;p--)
    41         {
    42             mul(res,res,k);
    43             if ((n>>p)&1)
    44             {
    45                 for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
    46                 rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
    47             }
    48         }
    49         rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
    50         if (ans<0) ans+=mod;
    51         return ans;
    52     }
    53     VI BM(VI s) {
    54         VI C(1,1),B(1,1);
    55         int L=0,m=1,b=1;
    56         rep(n,0,SZ(s)) {
    57             ll d=0;
    58             rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
    59             if (d==0) ++m;
    60             else if (2*L<=n) {
    61                 VI T=C;
    62                 ll c=mod-d*powmod(b,mod-2)%mod;
    63                 while (SZ(C)<SZ(B)+m) C.pb(0);
    64                 rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
    65                 L=n+1-L; B=T; b=d; m=1;
    66             } else {
    67                 ll c=mod-d*powmod(b,mod-2)%mod;
    68                 while (SZ(C)<SZ(B)+m) C.pb(0);
    69                 rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
    70                 ++m;
    71             }
    72         }
    73         return C;
    74     }
    75     int gao(VI a,ll n) {
    76         VI c=BM(a);
    77         c.erase(c.begin());
    78         rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
    79         return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
    80     }
    81 };
    82 int main()
    83 {
    84     scanf("%lld%lld",&n,&m);
    85     vector<int> v;
    86     for(int i=1;i<m;++i) v.push_back(1);
    87     for(ll i=1;i<=m;++i) dp[i]=i+1,v.push_back(dp[i]);
    88     for(int i=m+1;i<=10;++i) dp[i]=dp[i-1]+dp[i-m],v.push_back(dp[i]);
    89 
    90     printf("%lld
    ",linear_seq::gao(v,n-1)%mod);
    91     return 0;
    92 }
    View Code
  • 相关阅读:
    【升鲜宝】生鲜配送管理系统_升鲜宝 V2.0 按客户商品分类分开打印配送与按客户商品分类导出相关订单商品相关说明(一)
    生鲜配送管理系统_升鲜宝 V2.0 小程序辅助系统工具矩阵系列相关说明
    [置顶]生鲜配送管理系统_升鲜宝V2.0 销售订单汇总_采购任务分配功能_操作说明
    生鲜配送管理系统_升鲜宝V2.0 小标签打印功能【代配送商品打印小标签功能】说明_15382353715
    【升鲜宝】生鲜配送管理系统_升鲜宝供应链系统V2.0 客户管理模块功能与设计,欢迎大家批评指点。
    生鲜配送管理系统_升鲜宝供应链系统V2.0 设计思想及主要模块,欢迎大家批评指点。
    生鲜配送行业,接地气的采购入库盘点估清流程
    水产信息记帐平板应用开发历程及相关文档流程简要_水产海鲜信息化系统_余东升_15382353715
    十年磨一剑,水产宝与升鲜宝即将横空出世,将正面与市面上的商业软件竞争。用小米加步枪对洋枪洋炮。升鲜宝将为杭州生鲜配送企业服务,8年的生鲜电商行业沉淀。
    订单配送型企业的配送流程研究与思考以及对零售订单排线,订单配送任务的分配系统的开发设计与实现 一 (升鲜宝供应链管理系统持续升级与优化)
  • 原文地址:https://www.cnblogs.com/csushl/p/10409004.html
Copyright © 2011-2022 走看看