zoukankan      html  css  js  c++  java
  • POJ-1915

    Background 
    Mr Somurolov, fabulous chess-gamer indeed, asserts that no one else but him can move knights from one position to another so fast. Can you beat him? 
    The Problem 
    Your task is to write a program to calculate the minimum number of moves needed for a knight to reach one point from another, so that you have the chance to be faster than Somurolov. 
    For people not familiar with chess, the possible knight moves are shown in Figure 1.

    Input
    The input begins with the number n of scenarios on a single line by itself. 
    Next follow n scenarios. Each scenario consists of three lines containing integer numbers. The first line specifies the length l of a side of the chess board (4 <= l <= 300). The entire board has size l * l. The second and third line contain pair of integers {0, ..., l-1}*{0, ..., l-1} specifying the starting and ending position of the knight on the board. The integers are separated by a single blank. You can assume that the positions are valid positions on the chess board of that scenario.
    Output
    For each scenario of the input you have to calculate the minimal amount of knight moves which are necessary to move from the starting point to the ending point. If starting point and ending point are equal,distance is zero. The distance must be written on a single line.
    Sample Input
    3
    8
    0 0
    7 0
    100
    0 0
    30 50
    10
    1 1
    1 1
    Sample Output
    5
    28
    0

    题解:本题是典型的搜索类问题(DFS &&BFS),这里用BFS,类似马

    AC代码为:

    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<queue>
    using namespace std;
    
    int bfsx[8]={1,1,-1,-1,2,2,-2,-2};
    int bfsy[8]={2,-2,2,-2,1,-1,1,-1};
    int vis[310][310];
    
    struct node{
    	int x;
    	int y;
    	int counter;
    } xy1,xy2;
    
    int m,sum;
    queue<node> q;
    
    void BFS(node nd)
    {
    	node now,next;
    	
    	nd.counter =0;
    	now.counter =0;
    	next.counter =0;
    	
    	while(!q.empty())
    		q.pop();
    	
    	q.push(nd);
    	
    	vis[nd.x][nd.y]=1;
    	
    	while(!q.empty())
    	{
    		now=q.front();
    		q.pop();
    		if(now.x == xy2.x && now.y == xy2.y )
    		{
    			printf("%d
    ",now.counter);
    			return ;
    		}
    		for(int i=0;i<8;i++)
    		{
    			next.x=now.x+bfsx[i];
    			next.y=now.y+bfsy[i];
    			next.counter=now.counter+1;
    			
    			if(next.x>=0 && next.x<m && next.y >=0 && next.y<m && !vis[next.x][next.y])
    			{
    				vis[next.x][next.y]=1;
    				q.push(next);
    			}
    		}	
    	}	
    }
    
    int main()
    {
    	int N;
    	cin>>N;
    	while(N--)
    	{
    		cin>>m;
    		cin>>xy1.x>>xy1.y>>xy2.x>>xy2.y;
    		memset(vis,0,sizeof(vis));
    		BFS(xy1);	
    	}
    	return 0;
     } 



  • 相关阅读:
    了解一下下MFC基础中的基础
    【看书】浮点数陷阱
    [bbk4766] 第29集 第三章 Flashback Table 06
    [bbk4778] 第31集 第三章 Flashback Table 08
    [bbk4793] 第36集 第四章 Flashback Database 00
    [bbk4774] 第30集 第三章 Flashback Table 07
    [bbk4759] 第28集 第三章 Flashback Table 05
    [bbk4788] 第35集 第三章 Flashback Table 12
    [bbk4754] 第27集 第三章 Flashback Table 04
    [bbk4781] 第32集 第三章 Flashback Table 09
  • 原文地址:https://www.cnblogs.com/csushl/p/9386590.html
Copyright © 2011-2022 走看看