zoukankan      html  css  js  c++  java
  • Coderforces-455A

    Alex doesn't like boredom. That's why whenever he gets bored, he comes up with games. One long winter evening he came up with a game and decided to play it.

    Given a sequence a consisting of n integers. The player can make several steps. In a single step he can choose an element of the sequence (let's denote it ak) and delete it, at that all elements equal to ak + 1 and ak - 1 also must be deleted from the sequence. That step brings ak points to the player.

    Alex is a perfectionist, so he decided to get as many points as possible. Help him.

    Input

    The first line contains integer n (1 ≤ n ≤ 105) that shows how many numbers are in Alex's sequence.

    The second line contains n integers a1a2, ..., an (1 ≤ ai ≤ 105).

    Output

    Print a single integer — the maximum number of points that Alex can earn.

    Example
    Input
    2
    1 2
    
    Output
    2
    
    Input
    3
    1 2 3
    
    Output
    4
    
    Input
    9
    1 2 1 3 2 2 2 2 3
    
    Output
    10
    
    Note

    Consider the third test example. At first step we need to choose any element equal to 2. After that step our sequence looks like this [2, 2, 2, 2]. Then we do 4 steps, on each step we choose any element equals to 2. In total we earn 10 points.


    题意:就是给你N个数。你可选择大小的为A的数,但是A-1和A+1必须从数队移走。

    题解:本题与数的顺序无关(这时候想到了DP),我们先对其排序。然后找其状态转移方程。假设dp[j]表示从1加到j 时最大值。则dp[j]=max(dp[j-1],dp[j-2]+i*cnt[i]).【ps:cnt[i]表示数值为】

    AC代码为:

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<algorithm>
    using namespace std;


    long long  n, a[100002], cot[100002], d[100002];


    int main()
    {
    cin >> n;


    long long Max = 0;


    for (int i = 1; i <= n; i++)
    {
    cin >> a[i];
    if (a[i] > Max)
    Max = a[i];
    cot[a[i]]++;
    }


    d[1] = cot[1];  d[0] = 0;


    for (int i = 2; i <= Max; i++)
    d[i] = max(d[i - 1], d[i - 2] + cot[i] * i);


    cout << d[Max] << endl;


    return 0;
    }





  • 相关阅读:
    LeetCode 227. Basic Calculator II
    LeetCode 224. Basic Calculator
    LeetCode 103. Binary Tree Zigzag Level Order Traversal
    LeetCode 102. Binary Tree Level Order Traversal
    LeetCode 106. Construct Binary Tree from Inorder and Postorder Traversal
    LeetCode 105. Construct Binary Tree from Preorder and Inorder Traversal
    LeetCode 169. Majority Element
    LeetCode 145. Binary Tree Postorder Traversal
    LeetCode 94. Binary Tree Inorder Traversal
    LeetCode 144. Binary Tree Preorder Traversal
  • 原文地址:https://www.cnblogs.com/csushl/p/9386621.html
Copyright © 2011-2022 走看看