zoukankan      html  css  js  c++  java
  • HDU3666-THE MATRIX PROBLEM(差分约束-不等式解得存在性判断 对数转化)

    You have been given a matrix C N*M, each element E of C N*M is positive and no more than 1000, The problem is that if there exist N numbers a1, a2, … an and M numbers b1, b2, …, bm, which satisfies that each elements in row-i multiplied with ai and each elements in column-j divided by bj, after this operation every element in this matrix is between L and U, L indicates the lowerbound and U indicates the upperbound of these elements.

    Input

    There are several test cases. You should process to the end of file. 
    Each case includes two parts, in part 1, there are four integers in one line, N,M,L,U, indicating the matrix has N rows and M columns, L is the lowerbound and U is the upperbound (1<=N、M<=400,1<=L<=U<=10000). In part 2, there are N lines, each line includes M integers, and they are the elements of the matrix. 
     

    Output

    If there is a solution print "YES", else print "NO".

    Sample Input

    3 3 1 6
    2 3 4
    8 2 6
    5 2 9

    Sample Output

    YES
     题解:题目要求我们判断是否存在使矩阵的num[i][j]*a[n-i]/b[m-j]后为L到U之间的数值的两组数 即为L=<num[i][j]*a[i]/b[j]<=U,我们可以变为 log(b[i])-log(a[i])<=log(num[i][j])-log(L) , log(a[i])-log(b[i])<=log(U)-log(num[i][j])两个;即想到差分约束解得存在性(判断是否含有负环,若有,则无解,没有,则有解);

    参考代码如下:

    ​
    #include<bits/stdc++.h>
    using namespace std;
    using namespace std;
    const int maxn = 1e3;
    const int INF = 1e9;
    int c, vis[maxn], cnt[maxn], n, m, l, r;
    double dis[maxn];
    struct node
    {
        int to;
        double w;
        node(){}
        node(int tt, double ww) : to(tt), w(ww){}
    };
    vector<node> v[maxn];
    void spfa()
    {
        memset(vis, 0, sizeof(vis));
        memset(cnt, 0, sizeof(cnt));
        for(int i = 0; i < maxn; i++) dis[i] = INF;
        queue<int> q; q.push(0);
        vis[0] = 1; dis[0] = 0; cnt[0] = 1;
        while(!q.empty())
        {
            int u = q.front();
            q.pop();
            vis[u] = 0;
            for(int i = 0; i < v[u].size(); i++)
            {
                int to = v[u][i].to;
                double w = v[u][i].w;
                if(dis[u] + w < dis[to])
                {
                    dis[to] = dis[u] + w;
                    if(!vis[to])
                    {
                        vis[to] = 1;
                        if(++cnt[to]>sqrt(n+m))
                        {
                            printf("NO
    ");
                            return;
                        }
                        q.push(to);
                    }
                }
            }
        }
        printf("YES
    ");
        return ;
    }
    int main()
    {
        while(~scanf("%d%d%d%d", &n,&m,&l,&r))
        {
            for(int i=0;i<maxn;i++) v[i].clear();
            for(int i=1;i<=n;i++)
                for(int j=1;j<=m;j++)
                {
                    scanf("%d", &c);
                    v[n+j].push_back(node(i, log(r)-log(c)));
                    v[i].push_back(node(n+j,log(c)-log(l)));
                }
            for(int i = 1; i <= n+m; i++) v[0].push_back(node(i, 0));
            spfa();
        }
        return 0;
    }
    
    ​
  • 相关阅读:
    某大神C#框架后台发送信息的查找及破解
    多平台下Modbus通信协议库的设计(一)
    wpf 窗口程序下将datagrid导出为excel
    luogu P2598 [ZJOI2009]狼和羊的故事 |网络流最小割
    luogu P3171 [CQOI2015]网络吞吐量 |网络流最大流
    luogu P2469 [SDOI2010]星际竞速 |网络流费用流
    luogu P2172 [国家集训队]部落战争 |网络流最少路径覆盖
    luogu P2045 方格取数加强版 |最大费用最大流
    luogu P6327 区间加区间sin和 |线段树
    luogu P2402 奶牛隐藏 |网络流最大流+二分
  • 原文地址:https://www.cnblogs.com/csushl/p/9386771.html
Copyright © 2011-2022 走看看