zoukankan      html  css  js  c++  java
  • CodeForces1006F-Xor-Paths

    F. Xor-Paths

    time limit per test

    3 seconds

    memory limit per test

    256 megabytes

    input

    standard input

    output

    standard output

    There is a rectangular grid of size n×mn×m. Each cell has a number written on it; the number on the cell (i,ji,j) is ai,jai,j. Your task is to calculate the number of paths from the upper-left cell (1,11,1) to the bottom-right cell (n,mn,m) meeting the following constraints:

    • You can move to the right or to the bottom only. Formally, from the cell (i,ji,j) you may move to the cell (i,j+1i,j+1) or to the cell (i+1,ji+1,j). The target cell can't be outside of the grid.
    • The xor of all the numbers on the path from the cell (1,11,1) to the cell (n,mn,m) must be equal to kk (xor operation is the bitwise exclusive OR, it is represented as '^' in Java or C++ and "xor" in Pascal).

    Find the number of such paths in the given grid.

    Input

    The first line of the input contains three integers nn, mm and kk (1≤n,m≤201≤n,m≤20, 0≤k≤10180≤k≤1018) — the height and the width of the grid, and the number kk.

    The next nn lines contain mm integers each, the jj-th element in the ii-th line is ai,jai,j (0≤ai,j≤10180≤ai,j≤1018).

    Output

    Print one integer — the number of paths from (1,11,1) to (n,mn,m) with xor sum equal to kk.

    Examples

    input

    Copy

    3 3 11
    2 1 5
    7 10 0
    12 6 4
    

    output

    Copy

    3
    

    input

    Copy

    3 4 2
    1 3 3 3
    0 3 3 2
    3 0 1 1
    

    output

    Copy

    5
    

    input

    Copy

    3 4 1000000000000000000
    1 3 3 3
    0 3 3 2
    3 0 1 1
    

    output

    Copy

    0
    

    Note

    All the paths from the first example:

    • (1,1)→(2,1)→(3,1)→(3,2)→(3,3)(1,1)→(2,1)→(3,1)→(3,2)→(3,3);
    • (1,1)→(2,1)→(2,2)→(2,3)→(3,3)(1,1)→(2,1)→(2,2)→(2,3)→(3,3);
    • (1,1)→(1,2)→(2,2)→(3,2)→(3,3)(1,1)→(1,2)→(2,2)→(3,2)→(3,3).

    All the paths from the second example:

    • (1,1)→(2,1)→(3,1)→(3,2)→(3,3)→(3,4)(1,1)→(2,1)→(3,1)→(3,2)→(3,3)→(3,4);
    • (1,1)→(2,1)→(2,2)→(3,2)→(3,3)→(3,4)(1,1)→(2,1)→(2,2)→(3,2)→(3,3)→(3,4);
    • (1,1)→(2,1)→(2,2)→(2,3)→(2,4)→(3,4)(1,1)→(2,1)→(2,2)→(2,3)→(2,4)→(3,4);
    • (1,1)→(1,2)→(2,2)→(2,3)→(3,3)→(3,4)(1,1)→(1,2)→(2,2)→(2,3)→(3,3)→(3,4);
    • (1,1)→(1,2)→(1,3)→(2,3)→(3,3)→(3,4)(1,1)→(1,2)→(1,3)→(2,3)→(3,3)→(3,4).

    Codeforces (c) Copyright 2010-2018 Mike Mirzayanov

    The only programming contests Web 2.0 platform

    Server time: Jul/18/2018 00:56:41UTC+8 (d2).

    Desktop version, switch to mobile version.

    Privacy Policy

    题解:提议很好理解,寻找从(1,1)到(n,m)异或为K的路径有多少条;因为n,m<=20;暴力搜索即可DFS,可以双向DFS;

    AC代码为:

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    int n, m;
    unordered_map<ll,ll> mp[21];
    ll ans, k, a[21][21];
    void dfs1(int i, int j, ll v)
    {
        v ^= a[i][j];
        if(i+j == n+1) 
        {
            ++mp[i][v]; 
            return ;
        } 
        if(i<n) dfs1(i+1, j,v);
        if(j<m) dfs1(i,j+1, v);
    }

    void dfs2(int i, int j, ll v)
    {
        if(i+j == n+1) 
        {
            ans += mp[i][v^k]; 
            return ;
        } 
        v ^= a[i][j];
        if(i > 1) dfs2(i-1, j, v);
        if(j > 1) dfs2(i, j-1, v);
    }

    int main()
    {
        ios::sync_with_stdio(false);
        cin.tie(0);
        cin>>n>>m>>k;
        for (int i = 1; i <= n; i++) 
        {
            for (int j = 1; j <= m; j++) cin>>a[i][j];
        } 
        dfs1(1,1,0); dfs2(n, m, 0);
        cout<<ans<<endl;
        return 0;
    }

  • 相关阅读:
    Ackerman 函数奇怪的函数
    HDU2871 Memory Control 线段树区间合并
    HDU3667 Hotel 线段树 经典空间合并
    图论
    HDU3016 Man Down 线段树
    HDU1878 欧拉回路 判定是否存在欧拉回路
    从今开始
    如何打开注册表编辑器
    ASP.NET中TextBox控件设置ReadOnly="true"后台取不到值
    学习笔记(2011年5月到9月)
  • 原文地址:https://www.cnblogs.com/csushl/p/9386774.html
Copyright © 2011-2022 走看看