zoukankan      html  css  js  c++  java
  • POJ1458 Subsquence

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0
    题解:DP,最大公共子序列;dp[i][j]表示第一个串的第i个字符,第二个串的第j个字符所能匹配的最长公共子串。if s1[i]==s2[j] dp[i][j]=dp[i-1][j-1]+1; else dp[i][j]=max(dp[i-1][j],dp[i][j-1])找最大值即可:
    参考代码为:
    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<cmath>
    #include<string>
    #include<algorithm>
    using namespace std;
    
    int main()
    {
    	string str1, str2;
    	while (cin >> str1 >> str2)
    	{
    		int l1 = str1.size();
    		int l2 = str2.size();
    		int dp[1010][1010]={0};
    		int Max = 0;
    
    		for (int i = 0; i<l1; i++)
    		{
    			for (int j = 0; j<l2; j++)
    			{
    				if (str1[i] == str2[j])
    				{
    					dp[i+1][j+1] = dp[i][j] + 1;
    					if (dp[i+1][j+1]>Max)
    						Max = dp[i+1][j+1];
    
    				}
    				else
    				{
    					dp[i+1][j+1] = max(dp[i][j+1], dp[i+1][j]);
    					if (dp[i + 1][j + 1]>Max)
    						Max = dp[i + 1][j + 1];
    				}
    			}
    		}
    		cout << Max << endl;
    
    	}
    	return 0;
    }
    

      

  • 相关阅读:
    【内网穿透】【natapp】web服务映射
    【javascript】日期转字符串
    【springcloud】Transaction rolled back because it has been marked as rollback-only
    MySQL 快速创建索引
    MySQL 快速导入大量数据 资料收集
    基于WinCE的JSON 类库 源码
    C# 模拟提交 Form表单的数据
    git恢复删除的分支及内容
    js数组push方法使用注意
    mint-ui的search组件如何在键盘显示搜索按钮
  • 原文地址:https://www.cnblogs.com/csushl/p/9409792.html
Copyright © 2011-2022 走看看