zoukankan      html  css  js  c++  java
  • POJ1458 Subsquence

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0
    题解:DP,最大公共子序列;dp[i][j]表示第一个串的第i个字符,第二个串的第j个字符所能匹配的最长公共子串。if s1[i]==s2[j] dp[i][j]=dp[i-1][j-1]+1; else dp[i][j]=max(dp[i-1][j],dp[i][j-1])找最大值即可:
    参考代码为:
    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<cmath>
    #include<string>
    #include<algorithm>
    using namespace std;
    
    int main()
    {
    	string str1, str2;
    	while (cin >> str1 >> str2)
    	{
    		int l1 = str1.size();
    		int l2 = str2.size();
    		int dp[1010][1010]={0};
    		int Max = 0;
    
    		for (int i = 0; i<l1; i++)
    		{
    			for (int j = 0; j<l2; j++)
    			{
    				if (str1[i] == str2[j])
    				{
    					dp[i+1][j+1] = dp[i][j] + 1;
    					if (dp[i+1][j+1]>Max)
    						Max = dp[i+1][j+1];
    
    				}
    				else
    				{
    					dp[i+1][j+1] = max(dp[i][j+1], dp[i+1][j]);
    					if (dp[i + 1][j + 1]>Max)
    						Max = dp[i + 1][j + 1];
    				}
    			}
    		}
    		cout << Max << endl;
    
    	}
    	return 0;
    }
    

      

  • 相关阅读:
    java工厂方法模式
    java简单工厂设计模式
    Springboot接口简单实现生成MySQL插入语句
    JMeter 源码二次开发函数示例
    AssertJ断言系列-----------<数据库断言三>
    钉钉机器人集成Jenkins推送消息模板自定义发送报告
    删除ORECLE表主键ID的索引
    日志——log4j.properties配置文件说明
    java基础——反射机制(reflect)的使用
    spring batch (四) Job的配置及配置文件说明介绍
  • 原文地址:https://www.cnblogs.com/csushl/p/9409792.html
Copyright © 2011-2022 走看看