zoukankan      html  css  js  c++  java
  • POJ1458 Subsquence

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0
    题解:DP,最大公共子序列;dp[i][j]表示第一个串的第i个字符,第二个串的第j个字符所能匹配的最长公共子串。if s1[i]==s2[j] dp[i][j]=dp[i-1][j-1]+1; else dp[i][j]=max(dp[i-1][j],dp[i][j-1])找最大值即可:
    参考代码为:
    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<cmath>
    #include<string>
    #include<algorithm>
    using namespace std;
    
    int main()
    {
    	string str1, str2;
    	while (cin >> str1 >> str2)
    	{
    		int l1 = str1.size();
    		int l2 = str2.size();
    		int dp[1010][1010]={0};
    		int Max = 0;
    
    		for (int i = 0; i<l1; i++)
    		{
    			for (int j = 0; j<l2; j++)
    			{
    				if (str1[i] == str2[j])
    				{
    					dp[i+1][j+1] = dp[i][j] + 1;
    					if (dp[i+1][j+1]>Max)
    						Max = dp[i+1][j+1];
    
    				}
    				else
    				{
    					dp[i+1][j+1] = max(dp[i][j+1], dp[i+1][j]);
    					if (dp[i + 1][j + 1]>Max)
    						Max = dp[i + 1][j + 1];
    				}
    			}
    		}
    		cout << Max << endl;
    
    	}
    	return 0;
    }
    

      

  • 相关阅读:
    Qt源文件和ui文件的关系
    使用moveToThread线程并正确回收内存的方式
    mysql设置某字段不可重复
    使用curl创建简单的性能监控工具
    你是不是那个带不动的队友
    这样的面试你能通过吗
    浅谈测试观
    自动化测试如何准备测试数据
    关于双十二崩盘的一些思考
    浅谈测试环境
  • 原文地址:https://www.cnblogs.com/csushl/p/9409792.html
Copyright © 2011-2022 走看看