zoukankan      html  css  js  c++  java
  • POJ 1651 Mulitiplication Puzzle

    The multiplication puzzle is played with a row of cards, each containing a single positive integer. During the move player takes one card out of the row and scores the number of points equal to the product of the number on the card taken and the numbers on the cards on the left and on the right of it. It is not allowed to take out the first and the last card in the row. After the final move, only two cards are left in the row. 

    The goal is to take cards in such order as to minimize the total number of scored points. 

    For example, if cards in the row contain numbers 10 1 50 20 5, player might take a card with 1, then 20 and 50, scoring 
    10*1*50 + 50*20*5 + 10*50*5 = 500+5000+2500 = 8000

    If he would take the cards in the opposite order, i.e. 50, then 20, then 1, the score would be 
    1*50*20 + 1*20*5 + 10*1*5 = 1000+100+50 = 1150.

    Input

    The first line of the input contains the number of cards N (3 <= N <= 100). The second line contains N integers in the range from 1 to 100, separated by spaces.

    Output

    Output must contain a single integer - the minimal score.

    Sample Input

    6
    10 1 50 50 20 5
    

    Sample Output

    3650
    题解:区间DP。枚举中间点。
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<cmath>
     5 #include<algorithm>
     6 #include<queue>
     7 #include<stack>
     8 #include<map>
     9 #include<vector>
    10 #include<cstdlib>
    11 #include<set>
    12 using namespace std;
    13 const int INF=0x3f3f3f3f;
    14 int N,a[110],dp[110][110];
    15 
    16 int main()
    17 {
    18     while(scanf("%d",&N)!=EOF)
    19     {
    20         for(int i=1;i<=N;i++) scanf("%d",a+i);
    21         memset(dp,0,sizeof dp);
    22         
    23         for(int l=2;l<=N-1;l++)
    24         {
    25             for(int i=2;i<=N-l+1;i++)
    26             {
    27                 dp[i][i+l-1]=INF;
    28                 for(int k=i;k<i+l-1;k++) dp[i][i+l-1]=min(dp[i][i+l-1],dp[i][k]+dp[k+1][i+l-1]+a[i-1]*a[k]*a[i+l-1]);
    29             }
    30         }
    31         printf("%d
    ",dp[2][N]);
    32     }
    33     return 0;
    34  } 
    View Code
  • 相关阅读:
    关于宿命论的一点杂想
    关于平权意识
    《天语物道:李政道评传》
    这段时间的杂想
    Spring-Cloud简易全家桶实践
    spring-boot-starter实践
    docker 本地环境安装流程和基本指令
    SpringBoot启动关键点解析 及启动日志追溯
    Bean加载机制解读
    Spring Boot 启动机制源码阅读(粗略)
  • 原文地址:https://www.cnblogs.com/csushl/p/9415940.html
Copyright © 2011-2022 走看看