zoukankan      html  css  js  c++  java
  • HDU 6201 transaction transaction transaction

    Kelukin is a businessman. Every day, he travels around cities to do some business. On August 17th, in memory of a great man, citizens will read a book named "the Man Who Changed China". Of course, Kelukin wouldn't miss this chance to make money, but he doesn't have this book. So he has to choose two city to buy and sell. 
    As we know, the price of this book was different in each city. It is aiai yuanyuan in iittcity. Kelukin will take taxi, whose price is 11yuanyuan per km and this fare cannot be ignored. 
    There are n1n−1 roads connecting nn cities. Kelukin can choose any city to start his travel. He want to know the maximum money he can get. 

    Input

    The first line contains an integer TT (1T101≤T≤10) , the number of test cases. 
    For each test case: 
    first line contains an integer nn (2n1000002≤n≤100000) means the number of cities; 
    second line contains nn numbers, the iithth number means the prices in iithth city; (1Price10000)(1≤Price≤10000) 
    then follows n1n−1 lines, each contains three numbers xx, yy and zz which means there exists a road between xx and yy, the distance is zzkmkm (1z1000)(1≤z≤1000). 
    Output

    For each test case, output a single number in a line: the maximum money he can get. 

    Sample Input

    1  
    4  
    10 40 15 30  
    1 2 30
    1 3 2
    3 4 10

    Sample Output

    8
    题解:树形DP。这是让求从任意一点买书,然后到任意一点卖书,每条路都会耗费一定的费用,让求最多可挣多少钱。
    我们可以吧任意一个节点当成根节点,然后树形DP,(就是DFS遍历),dp[x][1]代表以x为根节点的子树中中卖书
    的最大值,dp[x][0]表示以x为根节点的子树中买书的最小费用。然后求dp[1~n][1]-dp[1~n][0]的最大值即可。

     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 typedef long long LL;
     4 const int INF=0x3f3f3f3f;
     5 const int maxn=1e5+10;
     6 int T,n,w[maxn],x,y,z,dp[maxn][2],Max,vis[maxn];
     7 struct Edge{
     8     int v,w;
     9     Edge(int vv,int ww):v(vv),w(ww) { }
    10 };
    11 vector<Edge> vec[maxn]; 
    12 void addedge(int u,int v,int w)
    13 {
    14     vec[u].push_back(Edge(v,w));
    15 }
    16 
    17 void dfs(int s)
    18 {
    19     vis[s]=1;
    20     for(int i=0;i<vec[s].size();i++) if(!vis[vec[s][i].v]) dfs(vec[s][i].v);
    21     for(int i=0;i<vec[s].size();i++)
    22     {
    23         dp[s][0]=min(dp[s][0],dp[vec[s][i].v][0]+vec[s][i].w);
    24         dp[s][1]=max(dp[s][1],dp[vec[s][i].v][1]-vec[s][i].w);
    25     }
    26 }
    27 
    28 int main()
    29 {
    30     scanf("%d",&T);
    31     while(T--)
    32     {
    33         memset(dp,0,sizeof dp);
    34         memset(vis,0,sizeof vis);
    35         scanf("%d",&n); 
    36         for(int i=1;i<=n;i++) vec[i].clear();
    37         for(int i=1;i<=n;i++) scanf("%d",w+i),dp[i][0]=dp[i][1]=w[i];
    38         for(int i=1;i<n;i++)
    39         {
    40             scanf("%d%d%d",&x,&y,&z);
    41             addedge(x,y,z); addedge(y,x,z);
    42         }
    43         dfs(1); Max=0;
    44         for(int i=1;i<=n;i++) Max=max(Max,dp[i][1]-dp[i][0]);
    45         printf("%d
    ",Max);
    46     }
    47     
    48     return 0;
    49  } 
    View Code
  • 相关阅读:
    谈谈严格模式
    javascript回调函数那些事~
    border-radius:50%和100%究竟有什么区别
    canvas浅谈 实现简单的自旋转下落
    js中关于this的理解
    对js 面对对象编程的一些简单的理解
    ios中 input 焦点光标不垂直居中
    只能输入数字的正则表达式在火狐的兼容问题解决方法
    关于margin、padding 对内联元素的影响
    element ui 表格的合并
  • 原文地址:https://www.cnblogs.com/csushl/p/9415991.html
Copyright © 2011-2022 走看看