zoukankan      html  css  js  c++  java
  • LightOj-1030 Discovering Gold (期望DP)

    You are in a cave, a long cave! The cave can be represented by a 1 x N grid. Each cell of the cave can contain any amount of gold.

    Initially you are in position 1. Now each turn you throw a perfect 6 sided dice. If you get X in the dice after throwing, you add X to your position and collect all the gold from the new position. If your new position is outside the cave, then you keep throwing again until you get a suitable result. When you reach the Nth position you stop your journey. Now you are given the information about the cave, you have to find out the expected number of gold you can collect using the given procedure.

    Input

    Input starts with an integer T (≤ 100), denoting the number of test cases.

    Each case contains a blank line and an integer N (1 ≤ N ≤ 100) denoting the dimension of the cave. The next line contains N space separated integers. The ith integer of this line denotes the amount of gold you will get if you come to the ith cell. You may safely assume that all the given integers will be non-negative and no integer will be greater than 1000.

    Output

    For each case, print the case number and the expected number of gold you will collect. Errors less than 10-6 will be ignored.

    Sample Input

    3

    1

    101

    2

    10 3

    3

    3 6 9

    Sample Output

    Case 1: 101.0000000000

    Case 2: 13.000

    Case 3: 15

    题解:

    起始位置是1,从1走到n,给你一个骰子(6个面),按点数走,收集每一点上的金子,如果你将要走到的位置在n之内,就继续扔,往前走,如果在n之外,就一直扔到合适的位置为止,求到达n点时的期望

     这个题是一个求期望的题,那么值得注意的是,当扔在n之外的情况是无效的,所以我们在位置i<n6i<n−6的时候 此时的概率应该为 1/(n-i),当我们在算权值的时候,我们发现对于位置i来说,它可以到i+1,i+2,i+6i+1,i+2,……,i+6 这些点,而这些点的权值又与他们后面6个点相关,因此我们倒过来从最后一个点开始求,最后一个点是一定会取的,于是我们就用一个dp数组把他计算一下;

    参考代码为:

     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 int T,n;
     4 double dp[110];
     5 
     6 int main()
     7 {
     8     scanf("%d",&T);
     9     for(int k=1;k<=T;k++)
    10     {
    11         scanf("%d",&n);
    12         memset(dp,0,sizeof dp);
    13         for(int i=1;i<=n;i++) scanf("%lf",dp+i);
    14         for(int i=n-1;i>=1;i--)
    15         {
    16             for(int j=1;j<=6;j++) dp[i]+=dp[i+j]/(1.0*min(6,n-i));
    17         }
    18         printf("Case %d: %.10lf
    ",k,dp[1]);
    19     }
    20     
    21     return 0;
    22 }
    View Code
  • 相关阅读:
    Objective-C Memory Management Being Exceptional 异常处理与内存
    Objective-C Memory Management 内存管理 2
    c语言全局变量与局部变量(当变量重名时)的使用情况
    c语言指针字符串与字符数组字符串的区别
    c语言数组不同初始化方式的结果
    补码的用途
    struts2框架加载配置文件的顺序
    CSS盒子模型
    基于注解整合struts2与spring的时候如果不引入struts2-spring-plugin包自动装配无效
    @Resource注解省略name属性后的行为
  • 原文地址:https://www.cnblogs.com/csushl/p/9483740.html
Copyright © 2011-2022 走看看