N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.
The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ N; A ≠ B), then cow A will always beat cow B.
Farmer John is trying to rank the cows by skill level. Given a list the results of M(1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.
Input
* Line 1: Two space-separated integers: N and M
* Lines 2..M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B
Output
* Line 1: A single integer representing the number of cows whose ranks can be determined
Sample Input
5 5 4 3 4 2 3 2 1 2 2 5
Sample Output
2
题解:
有N头牛,然后给你M个关系,
每个关系两头牛的编号:代表前者打败后者;
然后让你求可以确定名次的有多少头牛;
我们可以利用Folyed 来找找出每头牛可以和多少头牛建立关系,当且一头牛可以和剩下的N-1头牛都可以建立关系时,它的名次就可以确定了;求和即可达到答案;
参考代码:
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<cmath> 5 #include<cstdlib> 6 #include<algorithm> 7 #include<queue> 8 #include<deque> 9 #include<stack> 10 #include<set> 11 #include<vector> 12 #include<map> 13 using namespace std; 14 typedef long long LL; 15 typedef pair<int,int> PII; 16 #define PI acos(-1) 17 #define EPS 1e-8 18 const int INF=0x3f3f3f3f; 19 const LL inf=0x3f3f3f3f3f3f3f3fLL; 20 21 const int maxn=110; 22 int N,M,A,B,dp[maxn][maxn]; 23 int main() 24 { 25 scanf("%d%d",&N,&M); 26 memset(dp,0,sizeof dp); 27 for(int i=1;i<=M;i++) scanf("%d%d",&A,&B),dp[A][B]=1; 28 29 for(int k=1;k<=N;k++) 30 for(int i=1;i<=N;i++) 31 for(int j=1;j<=N;j++) if(dp[i][k]&&dp[k][j]) dp[i][j]=1; 32 33 int ans=0,j; 34 for(int i=1;i<=N;i++) 35 { 36 for(j=1;j<=N;j++) 37 { 38 if(i==j) continue; 39 if(!dp[i][j]&&!dp[j][i]) break; 40 } 41 if(j>N) ans++; 42 } 43 printf("%d ",ans); 44 return 0; 45 }