zoukankan      html  css  js  c++  java
  • Xapian索引-文档检索过程分析

        本文是Xapian检索过程的分析,本文内容中源码比较多。检索过程,总的来说就是拉取倒排链,取得合法doc,然后做打分排序的过程。

    1 理论分析

    1.1  检索语法

    面对不同的检索业务,我们会有多种检索需求,譬如:要求A term和B term都在Doc中出现;要求A term或者B term任意在Doc中出现;要求A term或者B term任意在Doc出现,并且C term不出现…...,用符号表示:

    A & B

    A || B

    (A || B) & ~C

    ( A & ( B || C ) ) || D

    以上的种种检索需求,复杂繁多,每一个检索需求都单独实现一份代码,是不现实的,需要有一种简单、高效、可扩展的检索语法来支持他们。

    1.2 检索过程

    首先是根据业务需求,组装检索语句,然后调用检索内核提供的API获取检索结果。

    检索内核的实现,以xapian为例:首先根据用户组装的检索语句形成query-tree(query检索树),然后将query-tree转换为postlist-tree(倒排链树),最后获取postlist-tree运算后的结果。在获取postlist-tree和最后的计算过程中,穿插着相关性公式(如:BM25)的运算。

    1.3 相关性

    计算query跟doc相关性方式有好几种,

    (1) 布尔模型(Boolean Model)
    判断用户的term在不在文档中出现,如果出现了则认为文档跟用户需求相关,否则认为不相关。
    优点:简单;
    缺点:结果是二元的,只有YES 或者 NO, 多条结果之间没有先后顺序;

    (2)向量空间模型(Vector Space Model)
    将query和doc都向量化,计算query跟doc的余弦值,这个值就是query跟doc的相似性打分。这里将查询跟文档的内容相似性替换相关性。
    这个模型对长文本比较抑制。
    consine公式:向量点积 / 向量长度相乘。
    那么,怎么向量化?每一纬的值,给多少合适?
    词频因子(TF):某个单词在文档中出现的次数;一般取log做平滑,避免直接使用词频导致出现1次和出现10次的term权重差异过大。 常见公式: Wtf = 1 + log(TF). 常量1是为了避免TF=1时,log(TF) = 0,导致W变成0。
    变体公式: Wtf = a + (1 - a) * TF/Max(TF),其中a是调节因子,取值0.4或者0.5,TF表示词频,Max(TF)表示文档中出现次数最多的单词对应的词频数目。这个变种有利于抑制长文本,使得不同长度文档的词频因子具有可比性。
    逆文档频率因子(IDF):包含有某个词的文档数量的倒数。如果一个词在所有文档中都出现,那么这个词对文档的区分度贡献不高,不是那么重要,反之,则说明这个词很重要。
    公式: IDFk = log(N/nk), N代表文档集合总共有多少个文档;nk代表词在多少个文档中出现过。

    TF*IDF框架
    Weight = TF * IDF

    (3)概率检索模型
    BIM模型的公式,由四个部分组成,这四个部分可以理解为:

    1、含有某term的doc在相关集合中出现的次数,正面因素;
    2、不含有某term的doc在相关集合中出现的次数,负面因素;
    3、含有某term的doc在不相关集合中出现的次数,负面因素;
    4、不含有某term的doc在不相关集合中不出现的次数,正面因素。


    BM25公式,三部分:1、BIM模型,等价于IDF;2、term在文档中的权重(doc-tf);3、term在query中的权重(query-tf);

    N,表示索引中总的文档数,
    Ni,表示索引中包含有term的文档数,也就是df,
    fi,表示term在文档中出现的次数,
    qfi,表示term在query中出现的次数,
    dl,表示文档长度,
    avdl,表示平均文档长度

    BM25F
    考虑到不同的域,对第二部分的平均长度、调节因子,需要根据不同的域设置不同的值,并且需要一个跟域相关联的权重值。

    相关性部分资料参考:《这就是搜索引擎》

    2 源码分析

    2.1 主要类

    下面以xapian为例,介绍一般检索过程,因涉及源码众多,部分枝节策略不一一细说。首先,这里列出,涉及到的主要类,从这里也可以一窥xapian在检索上的设计思路。

    绿色背景的块是用户看到的,蓝色背景是其底层涉及到的。

    Enquire::Internal,Enquire的内部实现,Xapian的设计风格都是包一层壳,功能实际的实现放在Internal中;

    BM25Weight,Xapian默认使用的相关性打分类;

    Weight::Internal,打分需要用到的基础信息,譬如:索引库文档量、索引库总的term长度、query里的 term的tf、df数据…;

    MultiMatch,检索的实现类;

    LocalSubMatch,本地子索引库操作的封装。 xapian支持远程索引库,也支持一个索引库拆分成多个子索引库;

    QueryOptimiser ,从Query-Tree构建PostList-Tree时的帮助类,主要记录了一些子索引库相关的信息,譬如:LocalSubMatch的引用、索引库DataBase的引用…;

    QueryOr、QueryBranch、QueryTerm ,这系列是Query Tree上的一个个类;

    PostList、LeafPostList,PostList-Tree上的一个个类;

    InMemoryPostList,内存索引库的PostList封装;

    OrContext,记录在Query-Tree转PostList-Tree过程中的PostList上下文信息,包括:QueryOptimiser对象指针、临时存放的PostList指针;

    2.2 检索过程

    2.2.1 用户demo代码

    Xapian::Query term_one = Xapian::Query("T世界");
    Xapian::Query term_two = Xapian::Query("T比赛");
    Xapian::Query query = Xapian::Query(Xapian::Query::OP_OR, term_one, term_two); // query组装
    
    std::cout << "query=" << query.get_description() << std::endl;
    
    Xapian::Enquire enquire(db);
    enquire.set_query(query);
    Xapian::MSet result = enquire.get_mset(0, 10); // 执行检索,获取结果
    std::cout << "find results count=" << result.get_matches_estimated() << std::endl;
    
    for (auto it = result.begin(); it != result.end(); ++it) {
        Xapian::Document doc = it.get_document();
        std::string data = doc.get_data();
        double doc_score_weight = it.get_weight();
        int doc_score_percent = it.get_percent();
        std::cout << "doc=" << data << ",weight=" << doc_score_weight << ",percent=" << doc_score_percent << std::endl;
    }

    2.2.2 query组装的实现

        只有一个类——Query,通过构造函数重载,提供了一切需要的功能。

        eg:

    Query::Query(const string & term, Xapian::termcount wqf, Xapian::termpos pos)
        : internal(new Xapian::Internal::QueryTerm(term, wqf, pos)) {
        LOGCALL_CTOR(API, "Query", term | wqf | pos);
    }
    Query(op op_, const Xapian::Query & a, const Xapian::Query & b) {
        init(op_, 2);
        bool positional = (op_ == OP_NEAR || op_ == OP_PHRASE);
        add_subquery(positional, a);
        add_subquery(positional, b);
        done();
    }

    /* 根据OP,生成对应的Query派生类,譬如:or的生成 QueryOr类,含有两个子query,这个QueryOr类对象作为Query的internal成员存在;
    在组合多个query时,直接添加到vector中;
    如果最后发现vector是空的则将internal设置为NULL,或者=1,则将internal设置为子query的internal,这样子可以避免不必要的vector嵌套,如:[xxquery],单个元素没必要放在vector中。*/

    ...

    检索树的组织没有做特别的设计,譬如:用vector来存储OR的元素。

    2.2.3 检索的实现

    (1)检索函数入口

    MSet Enquire::Internal::get_mset(Xapian::doccount first, Xapian::doccount maxitems, Xapian::doccount check_at_least, const RSet *rset, const MatchDecider *mdecider) const {
        LOGCALL(MATCH, MSet, "Enquire::Internal::get_mset", first | maxitems | check_at_least | rset | mdecider);
    
        if (percent_cutoff && (sort_by == VAL || sort_by == VAL_REL)) {
            throw Xapian::UnimplementedError("Use of a percentage cutoff while sorting primary by value isn't currently supported");
        }
    
        if (weight == 0) {
            weight = new BM25Weight;  // 如果外界没有指定打分策略,采用BM25Weight
        }
    
        Xapian::doccount first_orig = first;
        {
            Xapian::doccount docs = db.get_doccount();
            first = min(first, docs);
            maxitems = min(maxitems, docs - first);
            check_at_least = min(check_at_least, docs);
            check_at_least = max(check_at_least, first + maxitems);
        }
    
        AutoPtr<Xapian::Weight::Internal> stats(new Xapian::Weight::Internal);  // 用于记录打分用的全局信息
    // MultiMatch对象的初始化,会执行检索的初始化工作,譬如:填充stats对象,
    ::MultiMatch match(db, query, qlen, rset, collapse_max, collapse_key, percent_cutoff, weight_cutoff, order, sort_key, sort_by, sort_value_forward, time_limit, *(stats.get()), weight, spies, (sorter.get() != NULL), (mdecider != NULL)); // Run query and put results into supplied Xapian::MSet object. MSet retval; match.get_mset(first, maxitems, check_at_least, retval, *(stats.get()), mdecider, sorter.get()); // 检索 if (first_orig != first && retval.internal.get()) { retval.internal->firstitem = first_orig; } Assert(weight->name() != "bool" || retval.get_max_possible() == 0); // The Xapian::MSet needs to have a pointer to ourselves, so that it can // retrieve the documents. This is set here explicitly to avoid having // to pass it into the matcher, which gets messy particularly in the // networked case. retval.internal->enquire = this; if (!retval.internal->stats) { retval.internal->stats = stats.release(); } RETURN(retval); }

    (2)检索之前的准备工作,在 MultiMatch 对象构造的时候做,prepare_sub_matches:

    static void prepare_sub_matches(vector<intrusive_ptr<SubMatch> > & leaves, Xapian::Weight::Internal & stats) {
        LOGCALL_STATIC_VOID(MATCH, "prepare_sub_matches", leaves | stats);
        // We use a vector<bool> to track which SubMatches we're already prepared.
        vector<bool> prepared;
        prepared.resize(leaves.size(), false);
        size_t unprepared = leaves.size();
        bool nowait = true;
        while (unprepared) {
            for (size_t leaf = 0; leaf < leaves.size(); ++leaf) {
                if (prepared[leaf]) continue;
                SubMatch * submatch = leaves[leaf].get();
                if (!submatch || submatch->prepare_match(nowait, stats)) {
                    prepared[leaf] = true;
                    --unprepared;
                }
            }
            // Use blocking IO on subsequent passes, so that we don't go into
            // a tight loop.
            nowait = false;
        }
    }
    bool LocalSubMatch::prepare_match(bool nowait, Xapian::Weight::Internal & total_stats) {
        LOGCALL(MATCH, bool, "LocalSubMatch::prepare_match", nowait | total_stats);
        (void)nowait;
        Assert(db);
        total_stats.accumulate_stats(*db, rset);
        RETURN(true);
    }
    View Code
    void Weight::Internal::accumulate_stats(const Xapian::Database::Internal &subdb, const Xapian::RSet &rset) {
    #ifdef XAPIAN_ASSERTIONS
        Assert(!finalised);
        ++subdbs;
    #endif
        total_length += subdb.get_total_length();
        collection_size += subdb.get_doccount();
        rset_size += rset.size();
    
        total_term_count += subdb.get_doccount() * subdb.get_total_length();
        Xapian::TermIterator t;
        for (t = query.get_unique_terms_begin(); t != Xapian::TermIterator(); ++t) {
            const string & term = *t;
    
            Xapian::doccount sub_tf;
            Xapian::termcount sub_cf;
            subdb.get_freqs(term, &sub_tf, &sub_cf);
            TermFreqs & tf = termfreqs[term];
            tf.termfreq += sub_tf;
            tf.collfreq += sub_cf;
        }
    
        const set<Xapian::docid> & items(rset.internal->get_items());
        set<Xapian::docid>::const_iterator d;
        for (d = items.begin(); d != items.end(); ++d) {
            Xapian::docid did = *d;
            Assert(did);
            // The query is likely to contain far fewer terms than the documents,
            // and we can skip the document's termlist, so look for each query term
            // in the document.
            AutoPtr<TermList> tl(subdb.open_term_list(did));
            map<string, TermFreqs>::iterator i;
            for (i = termfreqs.begin(); i != termfreqs.end(); ++i) {
                const string & term = i->first;
                TermList * ret = tl->skip_to(term);
                Assert(ret == NULL);
                (void)ret;
                if (tl->at_end()) {
                    break;
                }
                if (term == tl->get_termname()) {
                    ++i->second.reltermfreq;
                }
            }
        }
    }
    View Code

    prepare_sub_matches(): BM25计算之前的准备工作
    Weight::Internal::accumulate_stats:
    total_length:db的总文档长度加和;
    collection_size:db的总文档数量;
    total_term_count: 存疑,变量名是term计数,实际上是总文档长度加和 * 总文档数量;
    termfreqs: term的tf信息(term在多少个doc中出现)和cf信息(term在索引集合中出现的次数);
    query中涉及到的所有term,都获取到它们的TF、IDF信息;
    极致的压缩:VectorTermList,把几个string存储的term压缩存储到一个块内存中。如果使用vector来存储,则会增加30Byte每一个term。

    (3)打开倒排链,构造postlist-tree:

    打开倒排链和检索放在一个800行的超大函数里面:

    void MultiMatch::get_mset(Xapian::doccount first, Xapian::doccount maxitems,
                 Xapian::doccount check_at_least,
                 Xapian::MSet & mset,
                 Xapian::Weight::Internal & stats,
                 const Xapian::MatchDecider *mdecider,
                 const Xapian::KeyMaker *sorter) {
    ........
    }

    打开倒排链的过程,函数多层嵌套非常深入,这也是检索树解析-->重建过程:

    PostList * LocalSubMatch::get_postlist(MultiMatch * matcher, Xapian::termcount * total_subqs_ptr) {
        LOGCALL(MATCH, PostList *, "LocalSubMatch::get_postlist", matcher | total_subqs_ptr);
    
        if (query.empty()) {
            RETURN(new EmptyPostList); // MatchNothing
        }
    
        // Build the postlist tree for the query.  This calls
        // LocalSubMatch::open_post_list() for each term in the query.
        PostList * pl;
        {
            QueryOptimiser opt(*db, *this, matcher);
            pl = query.internal->postlist(&opt, 1.0);
            *total_subqs_ptr = opt.get_total_subqs();
        }
    
        AutoPtr<Xapian::Weight> extra_wt(wt_factory->clone());
        // Only uses term-independent stats.
        extra_wt->init_(*stats, qlen);
        if (extra_wt->get_maxextra() != 0.0) {
            // There's a term-independent weight contribution, so we combine the
            // postlist tree with an ExtraWeightPostList which adds in this
            // contribution.
            pl = new ExtraWeightPostList(pl, extra_wt.release(), matcher);
        }
    
        RETURN(pl);
    }
    PostingIterator::Internal * QueryOr::postlist(QueryOptimiser * qopt, double factor) const {
        LOGCALL(QUERY, PostingIterator::Internal *, "QueryOr::postlist", qopt | factor);
        OrContext ctx(qopt, subqueries.size());
        do_or_like(ctx, qopt, factor);
        RETURN(ctx.postlist());
    }
    View Code
    void QueryBranch::do_or_like(OrContext& ctx, QueryOptimiser * qopt, double factor, Xapian::termcount elite_set_size, size_t first) const {
        LOGCALL_VOID(MATCH, "QueryBranch::do_or_like", ctx | qopt | factor | elite_set_size);
    
        // FIXME: we could optimise by merging OP_ELITE_SET and OP_OR like we do
        // for AND-like operations.
    
        // OP_SYNONYM with a single subquery is only simplified by
        // QuerySynonym::done() if the single subquery is a term or MatchAll.
        Assert(subqueries.size() >= 2 || get_op() == Query::OP_SYNONYM);
    
        vector<PostList *> postlists;
        postlists.reserve(subqueries.size() - first);
    
        QueryVector::const_iterator q;
        for (q = subqueries.begin() + first; q != subqueries.end(); ++q) {
            // MatchNothing subqueries should have been removed by done().
            Assert((*q).internal.get());
            (*q).internal->postlist_sub_or_like(ctx, qopt, factor);
        }
    
        if (elite_set_size && elite_set_size < subqueries.size()) {
            ctx.select_elite_set(elite_set_size, subqueries.size());
            // FIXME: not right!
        }
    }
    View Code

    ...

    LeafPostList * LocalSubMatch::open_post_list(const string& term,
                      Xapian::termcount wqf,
                      double factor,
                      bool need_positions,
                      bool in_synonym,
                      QueryOptimiser * qopt,
                      bool lazy_weight) {
        LOGCALL(MATCH, LeafPostList *, "LocalSubMatch::open_post_list", term | wqf | factor | need_positions | qopt | lazy_weight);
    
        bool weighted = (factor != 0.0 && !term.empty());
    
        LeafPostList * pl = NULL;
        if (!term.empty() && !need_positions) {
            if ((!weighted && !in_synonym) ||
                !wt_factory->get_sumpart_needs_wdf_()) {
                Xapian::doccount sub_tf;
                db->get_freqs(term, &sub_tf, NULL);
                if (sub_tf == db->get_doccount()) {
                    // If we're not going to use the wdf or term positions, and the
                    // term indexes all documents, we can replace it with the
                    // MatchAll postlist, which is especially efficient if there
                    // are no gaps in the docids.
                    pl = db->open_post_list(string());
                    // Set the term name so the postlist looks up the correct term
                    // frequencies - this is necessary if the weighting scheme
                    // needs collection frequency or reltermfreq (termfreq would be
                    // correct anyway since it's just the collection size in this
                    // case).
                    pl->set_term(term);
                }
            }
        }
    
        if (!pl) {
            const LeafPostList * hint = qopt->get_hint_postlist();
            if (hint)
                pl = hint->open_nearby_postlist(term);
            if (!pl)
                pl = db->open_post_list(term);
            qopt->set_hint_postlist(pl);
        }
    
        if (lazy_weight) {
            // Term came from a wildcard, but we may already have that term in the
            // query anyway, so check before accumulating its TermFreqs.
            map<string, TermFreqs>::iterator i = stats->termfreqs.find(term);
            if (i == stats->termfreqs.end()) {
                Xapian::doccount sub_tf;
                Xapian::termcount sub_cf;
                db->get_freqs(term, &sub_tf, &sub_cf);
                stats->termfreqs.insert(make_pair(term, TermFreqs(sub_tf, 0, sub_cf)));
            }
        }
    
        if (weighted) {
            Xapian::Weight * wt = wt_factory->clone();
            if (!lazy_weight) {
                wt->init_(*stats, qlen, term, wqf, factor);  // BM25Weight::init()计算不涉及query跟doc相关性部分的打分(只跟term和query相关)
                stats->set_max_part(term, wt->get_maxpart());
            } else {
                // Delay initialising the actual weight object, so that we can
                // gather stats for the terms lazily expanded from a wildcard
                // (needed for the remote database case).
                wt = new LazyWeight(pl, wt, stats, qlen, wqf, factor);
            }
            pl->set_termweight(wt);
        }
        RETURN(pl);
    }

    weight的init:

    void BM25Weight::init(double factor) {
        Xapian::doccount tf = get_termfreq();
    
        double tw = 0;
        if (get_rset_size() != 0) {
            Xapian::doccount reltermfreq = get_reltermfreq();
    
            // There can't be more relevant documents indexed by a term than there
            // are documents indexed by that term.
            AssertRel(reltermfreq,<=,tf);
    
            // There can't be more relevant documents indexed by a term than there
            // are relevant documents.
            AssertRel(reltermfreq,<=,get_rset_size());
    
            Xapian::doccount reldocs_not_indexed = get_rset_size() - reltermfreq;
    
            // There can't be more relevant documents not indexed by a term than
            // there are documents not indexed by that term.
            AssertRel(reldocs_not_indexed,<=,get_collection_size() - tf);
    
            Xapian::doccount Q = get_collection_size() - reldocs_not_indexed;
    
            Xapian::doccount nonreldocs_indexed = tf - reltermfreq;
            double numerator = (reltermfreq + 0.5) * (Q - tf + 0.5);
            double denom = (reldocs_not_indexed + 0.5) * (nonreldocs_indexed + 0.5);
            tw = numerator / denom;
        } else {
            tw = (get_collection_size() - tf + 0.5) / (tf + 0.5);
        }
    
        AssertRel(tw,>,0);
    
        // The "official" formula can give a negative termweight in unusual cases
        // (without an RSet, when a term indexes more than half the documents in
        // the database).  These negative weights aren't actually helpful, and it
        // is common for implementations to replace them with a small positive
        // weight or similar.
        //
        // Truncating to zero doesn't seem a great approach in practice as it
        // means that some terms in the query can have no effect at all on the
        // ranking, and that some results can have zero weight, both of which
        // are seem surprising.
        //
        // Xapian 1.0.x and earlier adjusted the termweight for any term indexing
        // more than a third of documents, which seems rather "intrusive".  That's
        // what the code currently enabled does, but perhaps it would be better to
        // do something else. (FIXME)
    #if 0
        if (rare(tw <= 1.0)) {
            termweight = 0;
        } else {
            termweight = log(tw) * factor;
            if (param_k3 != 0) {
                double wqf_double = get_wqf();
                termweight *= (param_k3 + 1) * wqf_double / (param_k3 + wqf_double);
            }
        }
    #else
        if (tw < 2) tw = tw * 0.5 + 1;
        termweight = log(tw) * factor;
        if (param_k3 != 0) {
            double wqf_double = get_wqf();
            termweight *= (param_k3 + 1) * wqf_double / (param_k3 + wqf_double);
        }
    #endif
        termweight *= (param_k1 + 1);
    
        LOGVALUE(WTCALC, termweight);
    
        if (param_k2 == 0 && (param_b == 0 || param_k1 == 0)) {
            // If k2 is 0, and either param_b or param_k1 is 0 then the document
            // length doesn't affect the weight.
            len_factor = 0;
        } else {
            len_factor = get_average_length();
            // len_factor can be zero if all documents are empty (or the database
            // is empty!)
            if (len_factor != 0) len_factor = 1 / len_factor;
        }
    
        LOGVALUE(WTCALC, len_factor);
    }
    View Code

    总的来说,这一阶段:

    stats设置给LocalSubMatch对象;
    获取倒排列表,根据query-tree构建postlist-tree;同时,clone一个Weight对象,计算BM25所需要的计算因子;平均文档长度,文档的最短长度,term最大的wdf(term在某doc中出现的次数);
    计算BM25公式的idf部分:tw = (get_collection_size() - tf + 0.5) / (tf + 0.5); termweight = log(tw) * factor;
    计算BM25公式的term在query中的权重部分:double wqf_double = get_wqf(); termweight *= (param_k3 + 1) * wqf_double / (param_k3 + wqf_double);
    计算BM25公式的term跟doc相关程度的一部分参数: termweight *= (param_k1 + 1);
    计算BM25公式的平均长度分之一:len_factor = 1 / len_factor;
    计算maxpart() ,BM25算法,没有地方用这个值;

    这就把BM25公式中,不跟具体doc相关的第一和第三部分计算完成。

    构建postlist-tree,如果是And的语法,则使用PostList * AndContext::postlist() 生成postlist,然后把子postlist-tree销毁掉;

    (4)最终召回排序

    循环从postlist-tree拉取docid,然后计算BM25打分,
    倒排与链求交过程:
    PostList * MultiAndPostList::find_next_match(double w_min)

    两个有序链表求交
    0、第一个链表pos往前走一步;
    1、取出第一个链表的元素;
    2、find_next_match() --> check_helper() 将第二链表的pos往前走,保证第二链表当前位置大于等于第一链表;
    3、取出来第二链表的当前元素,跟第一链表原始做比较;
    4、如果不匹配则让第一链表往前走;

    注:拉链法。

    主要代码如下:

    /// 注:在调用这个函数之前会先调用next_helper函数,将第一条链表的位置向前移动一位(如果是首次调用则不移动),
    /// find_next_match函数让plist[0]倒排链定位到合适的位置,当能定位到合适的位置(plist[0]和plist[1]有交集)则返回,
    /// 否则说明没有交集,设置did=0后返回;调用者会通过判断did==0来确定当前链表交集是否已经做完;
    PostList * MultiAndPostList::find_next_match(double w_min) { advanced_plist0: if (plist[0]->at_end()) { did = 0; return NULL; } did = plist[0]->get_docid(); for (size_t i = 1; i < n_kids; ++i) { bool valid; check_helper(i, did, w_min, valid); if (!valid) { next_helper(0, w_min); goto advanced_plist0; } if (plist[i]->at_end()) { did = 0; return NULL; } Xapian::docid new_did = plist[i]->get_docid(); if (new_did != did) {
    /// 两条链表的pos元素不相等,只可能是因为plist[0].pos的元素比较小,需要向前移 skip_to_helper(
    0, new_did, w_min); goto advanced_plist0; } } return NULL; }

    获取BM25打分:

    double LeafPostList::get_weight() const {
        if (!weight) return 0;
        Xapian::termcount doclen = 0, unique_terms = 0;
        // Fetching the document length and number of unique terms is work we can
        // avoid if the weighting scheme doesn't use them.
        if (need_doclength)
            doclen = get_doclength();
        if (need_unique_terms)
            unique_terms = get_unique_terms();
        double sumpart = weight->get_sumpart(get_wdf(), doclen, unique_terms); // 这里对某个doc的最终BM25打分做了汇总,利用到了前面计算的第一和第三部分打分
        AssertRel(sumpart, <=, weight->get_maxpart());
        return sumpart;
    }

    两个有序链表求并
    PostList * OrPostList::next(double w_min)
    两个链表都取,在get_docid()时取最小did;如果其中一条倒排链已经取完,则用剩下的链替换之前两条链的owner。

    percent是怎么计算的?
        percent_scale = greatest_wt_subqs_matched / double(total_subqs);
        percent_scale /= greatest_wt;
    首先跟命中词个数占总搜索term个数有关系,然后,跟最大的匹配得分有关系,percent_scale会作为percent的因子:

        double v = wt * percent_factor + 100.0 * DBL_EPSILON;  // percent_scale就是percent_factor,v就是percent

        从BM25打分的执行过程,可以想到,有部分BM25打分因子(第一部分idf因子、第二部分term-doc相关性因子)是不需要在线计算的,只需要离线计算后并存储在倒排中即可。

        当前默认使用的BM25Weight打分策略,没有使用get_maxextra函数和get_sumextra函数。

        percent更详细的介绍可以看这里:https://www.cnblogs.com/cswuyg/p/10552564.html

    最终召回结果怎么做limit截断?

        当用户只需要n条,而召回结果大于n条,在处理n+1条时,使用std::make_heap,构造堆(如果之前已经构造了,则不需要再构造,直接往堆里加元素),并弹出打分最小的doc,保证只有n条资源。另外,程序还记录了min_weight,当资源打分小于min_weight,则直接丢弃,不需要走构建堆的过程。(详细源码见 multimatch.cc,746行起)

  • 相关阅读:
    Cookie和Seesion
    Forms组件
    分页器组件
    关于Django的Ajax操作
    Oracle常用数据库表操作
    redis的缓存穿透 缓存并发 缓存失效
    Struts2的拦截器
    Struts2的各种标签库
    Struts2基础知识
    Java常用数据结构和算法
  • 原文地址:https://www.cnblogs.com/cswuyg/p/10508114.html
Copyright © 2011-2022 走看看