zoukankan      html  css  js  c++  java
  • HDUOJ 2056 Rectangles (几何计算问题)

    Rectangles

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 7889    Accepted Submission(s): 2538


    Problem Description
    Given two rectangles and the coordinates of two points on the diagonals of each rectangle,you have to calculate the area of the intersected part of two rectangles. its sides are parallel to OX and OY .
     

    Input
    Input The first line of input is 8 positive numbers which indicate the coordinates of four points that must be on each diagonal.The 8 numbers are x1,y1,x2,y2,x3,y3,x4,y4.That means the two points on the first rectangle are(x1,y1),(x2,y2);the other two points on the second rectangle are (x3,y3),(x4,y4).
     

    Output
    Output For each case output the area of their intersected part in a single line.accurate up to 2 decimal places.
     

    Sample Input
    1.00 1.00 3.00 3.00 2.00 2.00 4.00 4.00 5.00 5.00 13.00 13.00 4.00 4.00 12.50 12.50
     

    Sample Output
    1.00 56.25
     
    #include <algorithm>
    #include <iostream>
    using namespace std;
    int main()
    {
    	double x[4],y[4],area;
    	int i,j;
    	while(cin>>x[0]>>y[0]>>x[1]>>y[1]>>x[2]>>y[2]>>x[3]>>y[3])
    	{
    		//判断两个矩形是否没有公共部分
    		for(i=0;i<4;i+=2)
    		{
    			if(x[i]>x[i+1]) swap(x[i],x[i+1]);
    			if(y[i]>y[i+1]) swap(y[i],y[i+1]);
    		}
    		if(x[2]>=x[1]||x[0]>=x[3]||y[2]>=y[1]||y[0]>=y[3]) area=0;
    		//有公共部分时计算面积
    		else
    		{
    			/*排序,排序后x[2]-x[1]即是公共部分的长,
    			y[2]-y[1]即是公共部分的高,注意公共部分是矩形*/
    			for(i=0;i<4;i++)
    			{
    				for(j=0;j<3-i;j++)
    				{
    					if(x[j]>x[j+1])
    						swap(x[j],x[j+1]);
    					if(y[j]>y[j+1])
    						swap(y[j],y[j+1]);
    				}
    			}
    
    			area=(x[2]-x[1])*(y[2]-y[1]);
    		}
    		printf("%.2lf\n",area);
    	}
    	return 0;
    }


  • 相关阅读:
    ThreadLocal的分享
    remot debug
    小计-git
    入坑HttpServletRequest.getParameterMap
    基于线程池和连接池的Http请求
    spring,maven,dubbo配置
    springMVC,mybatis配置事务
    寻找数组的主元素问题的解法
    关于最大子序列和问题以及相关衍生问题的分析
    关于选择问题的一些思路.
  • 原文地址:https://www.cnblogs.com/cszlg/p/2910532.html
Copyright © 2011-2022 走看看