zoukankan      html  css  js  c++  java
  • HDUOJ 2056 Rectangles (几何计算问题)

    Rectangles

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 7889    Accepted Submission(s): 2538


    Problem Description
    Given two rectangles and the coordinates of two points on the diagonals of each rectangle,you have to calculate the area of the intersected part of two rectangles. its sides are parallel to OX and OY .
     

    Input
    Input The first line of input is 8 positive numbers which indicate the coordinates of four points that must be on each diagonal.The 8 numbers are x1,y1,x2,y2,x3,y3,x4,y4.That means the two points on the first rectangle are(x1,y1),(x2,y2);the other two points on the second rectangle are (x3,y3),(x4,y4).
     

    Output
    Output For each case output the area of their intersected part in a single line.accurate up to 2 decimal places.
     

    Sample Input
    1.00 1.00 3.00 3.00 2.00 2.00 4.00 4.00 5.00 5.00 13.00 13.00 4.00 4.00 12.50 12.50
     

    Sample Output
    1.00 56.25
     
    #include <algorithm>
    #include <iostream>
    using namespace std;
    int main()
    {
    	double x[4],y[4],area;
    	int i,j;
    	while(cin>>x[0]>>y[0]>>x[1]>>y[1]>>x[2]>>y[2]>>x[3]>>y[3])
    	{
    		//判断两个矩形是否没有公共部分
    		for(i=0;i<4;i+=2)
    		{
    			if(x[i]>x[i+1]) swap(x[i],x[i+1]);
    			if(y[i]>y[i+1]) swap(y[i],y[i+1]);
    		}
    		if(x[2]>=x[1]||x[0]>=x[3]||y[2]>=y[1]||y[0]>=y[3]) area=0;
    		//有公共部分时计算面积
    		else
    		{
    			/*排序,排序后x[2]-x[1]即是公共部分的长,
    			y[2]-y[1]即是公共部分的高,注意公共部分是矩形*/
    			for(i=0;i<4;i++)
    			{
    				for(j=0;j<3-i;j++)
    				{
    					if(x[j]>x[j+1])
    						swap(x[j],x[j+1]);
    					if(y[j]>y[j+1])
    						swap(y[j],y[j+1]);
    				}
    			}
    
    			area=(x[2]-x[1])*(y[2]-y[1]);
    		}
    		printf("%.2lf\n",area);
    	}
    	return 0;
    }


  • 相关阅读:
    RFC7296--Internet密钥交换协议版本2(IKEv2)
    IPSec 100问
    strongswan--函数定义宏
    RFC6311--协议支持IKEv2 / IPsec的高可用性
    IPSec之security acl
    华罗庚
    韩罗塔核心算法
    javaBean
    Servlet
    javaee Api
  • 原文地址:https://www.cnblogs.com/cszlg/p/2910532.html
Copyright © 2011-2022 走看看