zoukankan      html  css  js  c++  java
  • Codeforces Round #191 (Div. 2) B. Hungry Sequence(素数筛选法)

    . Hungry Sequence

    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Iahub and Iahubina went to a date at a luxury restaurant. Everything went fine until paying for the food. Instead of money, the waiter wants Iahub to write a Hungry sequence consisting of n integers.

    A sequence a1, a2, ..., an, consisting of n integers, is Hungry if and only if:

    • Its elements are in increasing order. That is an inequality ai < aj holds for any two indices i, j (i < j).
    • For any two indices i and j (i < j), aj must not be divisible by ai.

    Iahub is in trouble, so he asks you for help. Find a Hungry sequence with n elements.

    Input

    The input contains a single integer: n (1 ≤ n ≤ 105).

    Output

    Output a line that contains n space-separated integers a1 a2, ..., an (1 ≤ ai ≤ 107), representing a possible Hungry sequence. Note, that each ai must not be greater than 10000000 (107) and less than 1.

    If there are multiple solutions you can output any one.

    Sample test(s)
    Input
    3
    Output
    2 9 15
    Input
    5
    Output
    11 14 20 27 31

    输出n个从小到大排列、每个数不超过范围的素数即可

    AC Code:
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    
    using namespace std;
    
    const int maxn = 2000000;
    bool prime[maxn];
    
    int main()
    {
        int n;
        memset(prime, false, sizeof(prime));
        for(int i = 2; i * i < maxn; i++)
        {
            for(int j = 2; i * j < maxn; j++)
                prime[i*j] = true;
        }
        while(scanf("%d", &n) != EOF)
        {
            printf("2");
            for(int i = 1, j = 3; i < n; j++)
            {
                if(prime[j] == false)
                {
                    printf(" %d", j);
                    i++;
                }
            }
            printf("
    ");
        }
        return 0;
    }
  • 相关阅读:
    E小press框架之第三步(参数接收)
    Express框架之第二步(路由)
    Express框架之第一步(创建工程)
    【排序】基数排序
    【数学】平方和公式$$sum_{i=1}^{n}i^2=frac{n(n+1)(2n+1)}{6}$$
    【博弈论】Nim游戏
    【搜索】对抗搜索【CF】J. Situation
    【图论】Kruskal算法
    dijkstra算法+堆优化 + 链式前向星版本
    【DP】【数位DP】
  • 原文地址:https://www.cnblogs.com/cszlg/p/3189918.html
Copyright © 2011-2022 走看看