zoukankan      html  css  js  c++  java
  • postgresql 的 group by 之 grouping sets/rollup/cube

    postgresql 从 9.5 开始提供 rollup/cube/grouping sets 分组函数,使用起来更为方便,尤其时用sql直接出报表时,一个sql就把明细和汇总值全部搞定。

    https://www.postgresql.org/docs/9.5/static/sql-select.html
    https://www.postgresql.org/docs/9.5/static/queries-table-expressions.html#QUERIES-GROUPING-SETS

    and grouping_element can be one of:
    
        ( )
        expression
        ( expression [, ...] )
        ROLLUP ( { expression | ( expression [, ...] ) } [, ...] )
        CUBE ( { expression | ( expression [, ...] ) } [, ...] )
        GROUPING SETS ( grouping_element [, ...] )

    测试数据

    with tmp_tab as (
      select '20180205' as day_id,'1001' as custno,'a001' as data_type,1 as qty union all
      select '20180205' as day_id,'1001' as custno,'a002' as data_type,2 as qty union all
      select '20180205' as day_id,'1002' as custno,'a001' as data_type,3 as qty union all
      select '20180205' as day_id,'1002' as custno,'a003' as data_type,4 as qty union all
      select '20180206' as day_id,'1001' as custno,'a004' as data_type,5 as qty union all
      select '20180207' as day_id,'1003' as custno,'a001' as data_type,6 as qty 
    )
    select grouping(t0.day_id) as day_id,
           grouping(t0.data_type) as data_type,
           grouping(t0.custno) as custno,
           t0.day_id,
           t0.data_type,
           t0.custno,
           sum(t0.qty)
    from tmp_tab t0
    group by t0.day_id,t0.data_type,t0.custno

    grouping sets:显示指定的汇总值

    1、group by grouping sets ( (t0.day_id,t0.data_type,t0.custno) )
    等效于
    group by t0.day_id,t0.data_type,t0.custno

     day_id | data_type | custno |  day_id  | data_type | custno | sum 
    --------+-----------+--------+----------+-----------+--------+-----
          0 |         0 |      0 | 20180205 | a001      | 1001   |   1
          0 |         0 |      0 | 20180207 | a001      | 1003   |   6
          0 |         0 |      0 | 20180205 | a002      | 1001   |   2
          0 |         0 |      0 | 20180205 | a001      | 1002   |   3
          0 |         0 |      0 | 20180205 | a003      | 1002   |   4
          0 |         0 |      0 | 20180206 | a004      | 1001   |   5
    (6 rows)

    2、group by grouping sets ( t0.day_id,t0.data_type,t0.custno )
    对 t0.day_id,t0.data_type,t0.custno 这三列分别求合计

     day_id | data_type | custno |  day_id  | data_type | custno | sum 
    --------+-----------+--------+----------+-----------+--------+-----
          0 |         1 |      1 | 20180205 |           |        |  10
          0 |         1 |      1 | 20180206 |           |        |   5
          0 |         1 |      1 | 20180207 |           |        |   6
          1 |         1 |      0 |          |           | 1001   |   8
          1 |         1 |      0 |          |           | 1002   |   7
          1 |         1 |      0 |          |           | 1003   |   6
          1 |         0 |      1 |          | a001      |        |  10
          1 |         0 |      1 |          | a002      |        |   2
          1 |         0 |      1 |          | a003      |        |   4
          1 |         0 |      1 |          | a004      |        |   5
    (10 rows)

    3、group by grouping sets ( (t0.day_id,t0.data_type),t0.custno )
    (t0.day_id,t0.data_type) 作为一个整体求合计

     day_id | data_type | custno |  day_id  | data_type | custno | sum 
    --------+-----------+--------+----------+-----------+--------+-----
          1 |         1 |      0 |          |           | 1001   |   8
          1 |         1 |      0 |          |           | 1002   |   7
          1 |         1 |      0 |          |           | 1003   |   6
          0 |         0 |      1 | 20180205 | a001      |        |   4
          0 |         0 |      1 | 20180205 | a002      |        |   2
          0 |         0 |      1 | 20180205 | a003      |        |   4
          0 |         0 |      1 | 20180206 | a004      |        |   5
          0 |         0 |      1 | 20180207 | a001      |        |   6
    (8 rows)
    

    4、group by grouping sets ( (t0.day_id),(t0.data_type),(t0.custno) )

     day_id | data_type | custno |  day_id  | data_type | custno | sum 
    --------+-----------+--------+----------+-----------+--------+-----
          0 |         1 |      1 | 20180205 |           |        |  10
          0 |         1 |      1 | 20180206 |           |        |   5
          0 |         1 |      1 | 20180207 |           |        |   6
          1 |         1 |      0 |          |           | 1001   |   8
          1 |         1 |      0 |          |           | 1002   |   7
          1 |         1 |      0 |          |           | 1003   |   6
          1 |         0 |      1 |          | a001      |        |  10
          1 |         0 |      1 |          | a002      |        |   2
          1 |         0 |      1 |          | a003      |        |   4
          1 |         0 |      1 |          | a004      |        |   5
    (10 rows)
    

    rollup:保留 group by 的基础上,增加汇总行
    1、group by rollup ( (t0.day_id,t0.data_type,t0.custno) )
    对t0.day_id,t0.data_type,t0.custno 这三列整体求个合计

     day_id | data_type | custno |  day_id  | data_type | custno | sum 
    --------+-----------+--------+----------+-----------+--------+-----
          0 |         0 |      0 | 20180205 | a001      | 1001   |   1
          0 |         0 |      0 | 20180205 | a001      | 1002   |   3
          0 |         0 |      0 | 20180205 | a002      | 1001   |   2
          0 |         0 |      0 | 20180205 | a003      | 1002   |   4
          0 |         0 |      0 | 20180206 | a004      | 1001   |   5
          0 |         0 |      0 | 20180207 | a001      | 1003   |   6
          1 |         1 |      1 |          |           |        |  21
    (7 rows)
    

    2、group by rollup ( t0.day_id,t0.data_type,t0.custno )
    对t0.day_id,t0.data_type,t0.custno 依次求合计

     day_id | data_type | custno |  day_id  | data_type | custno | sum 
    --------+-----------+--------+----------+-----------+--------+-----
          0 |         0 |      0 | 20180205 | a001      | 1001   |   1
          0 |         0 |      0 | 20180205 | a001      | 1002   |   3
          0 |         0 |      1 | 20180205 | a001      |        |   4
          0 |         0 |      0 | 20180205 | a002      | 1001   |   2
          0 |         0 |      1 | 20180205 | a002      |        |   2
          0 |         0 |      0 | 20180205 | a003      | 1002   |   4
          0 |         0 |      1 | 20180205 | a003      |        |   4
          0 |         1 |      1 | 20180205 |           |        |  10
          0 |         0 |      0 | 20180206 | a004      | 1001   |   5
          0 |         0 |      1 | 20180206 | a004      |        |   5
          0 |         1 |      1 | 20180206 |           |        |   5
          0 |         0 |      0 | 20180207 | a001      | 1003   |   6
          0 |         0 |      1 | 20180207 | a001      |        |   6
          0 |         1 |      1 | 20180207 |           |        |   6
          1 |         1 |      1 |          |           |        |  21
    (15 rows)
    

    3、group by rollup ( (t0.day_id,t0.data_type),t0.custno )
    (t0.day_id,t0.data_type) 作为一个整体求合计

     day_id | data_type | custno |  day_id  | data_type | custno | sum 
    --------+-----------+--------+----------+-----------+--------+-----
          0 |         0 |      0 | 20180205 | a001      | 1001   |   1
          0 |         0 |      0 | 20180205 | a001      | 1002   |   3
          0 |         0 |      1 | 20180205 | a001      |        |   4
          0 |         0 |      0 | 20180205 | a002      | 1001   |   2
          0 |         0 |      1 | 20180205 | a002      |        |   2
          0 |         0 |      0 | 20180205 | a003      | 1002   |   4
          0 |         0 |      1 | 20180205 | a003      |        |   4
          0 |         0 |      0 | 20180206 | a004      | 1001   |   5
          0 |         0 |      1 | 20180206 | a004      |        |   5
          0 |         0 |      0 | 20180207 | a001      | 1003   |   6
          0 |         0 |      1 | 20180207 | a001      |        |   6
          1 |         1 |      1 |          |           |        |  21
    (12 rows)
    

    4、group by rollup ( (t0.day_id),(t0.data_type),(t0.custno) )
    等效于第二种情况
    group by rollup ( t0.day_id,t0.data_type,t0.custno )

     day_id | data_type | custno |  day_id  | data_type | custno | sum 
    --------+-----------+--------+----------+-----------+--------+-----
          0 |         0 |      0 | 20180205 | a001      | 1001   |   1
          0 |         0 |      0 | 20180205 | a001      | 1002   |   3
          0 |         0 |      1 | 20180205 | a001      |        |   4
          0 |         0 |      0 | 20180205 | a002      | 1001   |   2
          0 |         0 |      1 | 20180205 | a002      |        |   2
          0 |         0 |      0 | 20180205 | a003      | 1002   |   4
          0 |         0 |      1 | 20180205 | a003      |        |   4
          0 |         1 |      1 | 20180205 |           |        |  10
          0 |         0 |      0 | 20180206 | a004      | 1001   |   5
          0 |         0 |      1 | 20180206 | a004      |        |   5
          0 |         1 |      1 | 20180206 |           |        |   5
          0 |         0 |      0 | 20180207 | a001      | 1003   |   6
          0 |         0 |      1 | 20180207 | a001      |        |   6
          0 |         1 |      1 | 20180207 |           |        |   6
          1 |         1 |      1 |          |           |        |  21
    (15 rows)
    

    cube:保留 group by 的基础上,增加指定列的交叉汇总行
    1、group by cube ( (t0.day_id,t0.data_type,t0.custno) )

     day_id | data_type | custno |  day_id  | data_type | custno | sum 
    --------+-----------+--------+----------+-----------+--------+-----
          0 |         0 |      0 | 20180205 | a001      | 1001   |   1
          0 |         0 |      0 | 20180205 | a001      | 1002   |   3
          0 |         0 |      0 | 20180205 | a002      | 1001   |   2
          0 |         0 |      0 | 20180205 | a003      | 1002   |   4
          0 |         0 |      0 | 20180206 | a004      | 1001   |   5
          0 |         0 |      0 | 20180207 | a001      | 1003   |   6
          1 |         1 |      1 |          |           |        |  21
    (7 rows)

    2、group by cube ( t0.day_id,t0.data_type,t0.custno )
    t0.day_id,t0.data_type,t0.custno 这三列交叉汇总

     day_id | data_type | custno |  day_id  | data_type | custno | sum 
    --------+-----------+--------+----------+-----------+--------+-----
          0 |         0 |      0 | 20180205 | a001      | 1001   |   1
          0 |         0 |      0 | 20180205 | a001      | 1002   |   3
          0 |         0 |      1 | 20180205 | a001      |        |   4
          0 |         0 |      0 | 20180205 | a002      | 1001   |   2
          0 |         0 |      1 | 20180205 | a002      |        |   2
          0 |         0 |      0 | 20180205 | a003      | 1002   |   4
          0 |         0 |      1 | 20180205 | a003      |        |   4
          0 |         1 |      1 | 20180205 |           |        |  10
          0 |         0 |      0 | 20180206 | a004      | 1001   |   5
          0 |         0 |      1 | 20180206 | a004      |        |   5
          0 |         1 |      1 | 20180206 |           |        |   5
          0 |         0 |      0 | 20180207 | a001      | 1003   |   6
          0 |         0 |      1 | 20180207 | a001      |        |   6
          0 |         1 |      1 | 20180207 |           |        |   6
          1 |         1 |      1 |          |           |        |  21
          0 |         1 |      0 | 20180205 |           | 1001   |   3
          0 |         1 |      0 | 20180206 |           | 1001   |   5
          1 |         1 |      0 |          |           | 1001   |   8
          0 |         1 |      0 | 20180205 |           | 1002   |   7
          1 |         1 |      0 |          |           | 1002   |   7
          0 |         1 |      0 | 20180207 |           | 1003   |   6
          1 |         1 |      0 |          |           | 1003   |   6
          1 |         0 |      0 |          | a001      | 1001   |   1
          1 |         0 |      0 |          | a001      | 1002   |   3
          1 |         0 |      0 |          | a001      | 1003   |   6
          1 |         0 |      1 |          | a001      |        |  10
          1 |         0 |      0 |          | a002      | 1001   |   2
          1 |         0 |      1 |          | a002      |        |   2
          1 |         0 |      0 |          | a003      | 1002   |   4
          1 |         0 |      1 |          | a003      |        |   4
          1 |         0 |      0 |          | a004      | 1001   |   5
          1 |         0 |      1 |          | a004      |        |   5
    (32 rows)
    

    3、group by cube ( (t0.day_id,t0.data_type),t0.custno )

     day_id | data_type | custno |  day_id  | data_type | custno | sum 
    --------+-----------+--------+----------+-----------+--------+-----
          0 |         0 |      0 | 20180205 | a001      | 1001   |   1
          0 |         0 |      0 | 20180205 | a002      | 1001   |   2
          0 |         0 |      0 | 20180206 | a004      | 1001   |   5
          1 |         1 |      0 |          |           | 1001   |   8
          0 |         0 |      0 | 20180205 | a001      | 1002   |   3
          0 |         0 |      0 | 20180205 | a003      | 1002   |   4
          1 |         1 |      0 |          |           | 1002   |   7
          0 |         0 |      0 | 20180207 | a001      | 1003   |   6
          1 |         1 |      0 |          |           | 1003   |   6
          1 |         1 |      1 |          |           |        |  21
          0 |         0 |      1 | 20180205 | a001      |        |   4
          0 |         0 |      1 | 20180205 | a002      |        |   2
          0 |         0 |      1 | 20180205 | a003      |        |   4
          0 |         0 |      1 | 20180206 | a004      |        |   5
          0 |         0 |      1 | 20180207 | a001      |        |   6
    (15 rows)
    

    4、group by cube ( (t0.day_id),(t0.data_type),(t0.custno) )

     day_id | data_type | custno |  day_id  | data_type | custno | sum 
    --------+-----------+--------+----------+-----------+--------+-----
          0 |         0 |      0 | 20180205 | a001      | 1001   |   1
          0 |         0 |      0 | 20180205 | a001      | 1002   |   3
          0 |         0 |      1 | 20180205 | a001      |        |   4
          0 |         0 |      0 | 20180205 | a002      | 1001   |   2
          0 |         0 |      1 | 20180205 | a002      |        |   2
          0 |         0 |      0 | 20180205 | a003      | 1002   |   4
          0 |         0 |      1 | 20180205 | a003      |        |   4
          0 |         1 |      1 | 20180205 |           |        |  10
          0 |         0 |      0 | 20180206 | a004      | 1001   |   5
          0 |         0 |      1 | 20180206 | a004      |        |   5
          0 |         1 |      1 | 20180206 |           |        |   5
          0 |         0 |      0 | 20180207 | a001      | 1003   |   6
          0 |         0 |      1 | 20180207 | a001      |        |   6
          0 |         1 |      1 | 20180207 |           |        |   6
          1 |         1 |      1 |          |           |        |  21
          0 |         1 |      0 | 20180205 |           | 1001   |   3
          0 |         1 |      0 | 20180206 |           | 1001   |   5
          1 |         1 |      0 |          |           | 1001   |   8
          0 |         1 |      0 | 20180205 |           | 1002   |   7
          1 |         1 |      0 |          |           | 1002   |   7
          0 |         1 |      0 | 20180207 |           | 1003   |   6
          1 |         1 |      0 |          |           | 1003   |   6
          1 |         0 |      0 |          | a001      | 1001   |   1
          1 |         0 |      0 |          | a001      | 1002   |   3
          1 |         0 |      0 |          | a001      | 1003   |   6
          1 |         0 |      1 |          | a001      |        |  10
          1 |         0 |      0 |          | a002      | 1001   |   2
          1 |         0 |      1 |          | a002      |        |   2
          1 |         0 |      0 |          | a003      | 1002   |   4
          1 |         0 |      1 |          | a003      |        |   4
          1 |         0 |      0 |          | a004      | 1001   |   5
          1 |         0 |      1 |          | a004      |        |   5
    (32 rows)
    

    postgresql 的 grouping sets/rollup/cube 与 oracle 的是一样的,使用简单,功能强大。

  • 相关阅读:
    VBA中的ColorIndex信息
    登录测试页面
    HttpHandler HttpModule入门篇
    vs 2005的条件断点(调试多线程必会)
    VBA中操作Excel的部分方法代码示例
    c# 线程同步: 详解lock,monitor,同步事件和等待句柄以及mutex
    一个对Entity Framework数据层的封装
    中华人民共和国 第二代身份证 号码规则
    什么是.NET应用程序域
    VBA编程常用语句(转载)
  • 原文地址:https://www.cnblogs.com/ctypyb2002/p/9793061.html
Copyright © 2011-2022 走看看