zoukankan      html  css  js  c++  java
  • Python中的可视化神器!你知道是啥吗?没错就是pyecharts!

    pyecharts是一款将python与echarts结合的强大的数据可视化工具,本文将为你阐述pyecharts的使用细则

    前言

    我们都知道python上的一款可视化工具matplotlib,而前些阵子做一个Spark项目的时候用到了百度开源的一个可视化JS工具-Echarts,可视化类型非常多,但是得通过导入js库在Java Web项目上运行,平时用Python比较多,于是就在想有没有Python与Echarts结合的轮子。Google后,找到一个国人开发的一个Echarts与Python结合的轮子:pyecharts,下面就来简述下pyecharts一些使用细则:

    私信小编01 02 03 04 即可获取数十套PDF哦!

    安装

    写这篇文章用的是Win环境,首先打开命令行(win+R),输入:

    pip install pyecharts

    但笔者实测时发现,由于墙的原因,下载时会出现断线和速度过慢的问题导致下载失败,所以建议通过清华镜像来进行下载:

    pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyecharts

     

    Python中的可视化神器!你知道是啥吗?没错就是pyecharts!

     

     

    出现上方的信息,即代表下载成功,我们可以来进行下一步的实验了!

    使用实例

    使用之前我们要强调一点:就是python2.x和python3.x的编码问题,在python3.x中你可以把它看做默认是unicode编码,但在python2.x中并不是默认的,原因就在它的bytes对象定义的混乱,而pycharts是使用unicode编码来处理字符串和文件的,所以当你使用的是python2.x时,请务必在上方插入此代码:

    from __future__ import unicode_literals

    现在我们来开始正式使用pycharts,这里我们直接使用官方的数据:

    柱状图-Bar

    //导入柱状图-Bar

    from pyecharts import Bar

    //设置行名

    columns = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]

    //设置数据

    data1 = [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]

    data2 = [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]

    //设置柱状图的主标题与副标题

    bar = Bar("柱状图", "一年的降水量与蒸发量")

    //添加柱状图的数据及配置项

    bar.add("降水量", columns, data1, mark_line=["average"], mark_point=["max", "min"])

    bar.add("蒸发量", columns, data2, mark_line=["average"], mark_point=["max", "min"])

    //生成本地文件(默认为.html文件)

    bar.render()

    运行结果如下:

     

    Python中的可视化神器!你知道是啥吗?没错就是pyecharts!

     

     

    简单的几行代码就可以将数据进行非常好看的可视化,而且还是动态的,在这里还是要安利一下jupyter,pyecharts在v0.1.9.2版本开始,在jupyter上直接调用实例(例如上方直接调用bar)就可以将图表直接表示出来,非常方便。

    笔者数了数,目前pyecharts上的图表大概支持到二十多种,接下来,我们再用上方的数据来生成几个数据挖掘常用的图表示例:

    饼图-Pie

    //导入饼图Pie

    from pyecharts import Pie

    //设置主标题与副标题,标题设置居中,设置宽度为900

    pie = Pie("饼状图", "一年的降水量与蒸发量",title_pos='center',width=900)

    //加入数据,设置坐标位置为【25,50】,上方的colums选项取消显示

    pie.add("降水量", columns, data1 ,center=[25,50],is_legend_show=False)

    //加入数据,设置坐标位置为【75,50】,上方的colums选项取消显示,显示label标签

    pie.add("蒸发量", columns, data2 ,center=[75,50],is_legend_show=False,is_label_show=True)

    //保存图表

    pie.render()

     

    Python中的可视化神器!你知道是啥吗?没错就是pyecharts!

     

     

    箱体图-Boxplot

    //导入箱型图Boxplot

    from pyecharts import Boxplot

    boxplot = Boxplot("箱形图", "一年的降水量与蒸发量")

    x_axis = ['降水量','蒸发量']

    y_axis = [data1,data2]

    //prepare_data方法可以将数据转为嵌套的 [min, Q1, median (or Q2), Q3, max]

    yaxis = boxplot.prepare_data(y_axis)

    boxplot.add("天气统计", x_axis, _yaxis)

    boxplot.render()

     

    Python中的可视化神器!你知道是啥吗?没错就是pyecharts!

     

     

    折线图-Line

    from pyecharts import Line

    line = Line("折线图","一年的降水量与蒸发量")

    //is_label_show是设置上方数据是否显示

    line.add("降水量", columns, data1, is_label_show=True)

    line.add("蒸发量", columns, data2, is_label_show=True)

    line.render()

     

    Python中的可视化神器!你知道是啥吗?没错就是pyecharts!

     

     

    雷达图-Rader

    from pyecharts import Radar

    radar = Radar("雷达图", "一年的降水量与蒸发量")

    //由于雷达图传入的数据得为多维数据,所以这里需要做一下处理

    radar_data1 = [[2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]]

    radar_data2 = [[2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]]

    //设置column的最大值,为了雷达图更为直观,这里的月份最大值设置有所不同

    schema = [

    ("Jan", 5), ("Feb",10), ("Mar", 10),

    ("Apr", 50), ("May", 50), ("Jun", 200),

    ("Jul", 200), ("Aug", 200), ("Sep", 50),

    ("Oct", 50), ("Nov", 10), ("Dec", 5)

    ]

    //传入坐标

    radar.config(schema)

    radar.add("降水量",radar_data1)

    //一般默认为同一种颜色,这里为了便于区分,需要设置item的颜色

    radar.add("蒸发量",radar_data2,item_color="#1C86EE")

    radar.render()

     

    Python中的可视化神器!你知道是啥吗?没错就是pyecharts!

     

     

    散点图-scatter

    from pyecharts import Scatter

    scatter = Scatter("散点图", "一年的降水量与蒸发量")

    //xais_name是设置横坐标名称,这里由于显示问题,还需要将y轴名称与y轴的距离进行设置

    scatter.add("降水量与蒸发量的散点分布", data1,data2,xaxis_name="降水量",yaxis_name="蒸发量",

    yaxis_name_gap=40)

    scatter.render()

     

    Python中的可视化神器!你知道是啥吗?没错就是pyecharts!

     

     

    图表布局 Grid

    由于标题与图表是属于两个不同的控件,所以这里必须对下方的图表Line进行标题位置设置,否则会出现标题重叠的bug。

    from pyecharts import Grid

    //设置折线图标题位置

    line = Line("折线图","一年的降水量与蒸发量",title_top="45%")

    line.add("降水量", columns, data1, is_label_show=True)

    line.add("蒸发量", columns, data2, is_label_show=True)

    grid = Grid()

    //设置两个图表的相对位置

    grid.add(bar, grid_bottom="60%")

    grid.add(line, grid_top="60%")

    grid.render()

     

    Python中的可视化神器!你知道是啥吗?没错就是pyecharts!

     

     

    from pyecharts import Overlap

    overlap = Overlap()

    bar = Bar("柱状图-折线图合并", "一年的降水量与蒸发量")

    bar.add("降水量", columns, data1, mark_point=["max", "min"])

    bar.add("蒸发量", columns, data2, mark_point=["max", "min"])

    overlap.add(bar)

    overlap.add(line)

    overlap.render()

     

    Python中的可视化神器!你知道是啥吗?没错就是pyecharts!

     

     

    总结

    1. 导入相关图表包
    2. 进行图表的基础设置,创建图表对象
    3. 利用add()方法进行数据输入与图表设置(可以使用print_echarts_options()来输出所有可配置项)
    4. 利用render()方法来进行图表保存
  • 相关阅读:
    01《UML大战需求分析》阅读笔记之一
    软件构架实践阅读笔记四(读后感)
    软件构架实践阅读笔记三(读后感)
    软件构架实践阅读笔记二(读后感)
    软件构架实践阅读笔记一(读后感)
    阅读笔记 火球UML大战需求分析4
    阅读笔记 火球UML大战需求分析3
    阅读笔记 火球——UML大战需求分析 2
    课堂讨论
    学习进度条
  • 原文地址:https://www.cnblogs.com/cuiyubo/p/9729449.html
Copyright © 2011-2022 走看看