zoukankan      html  css  js  c++  java
  • HDU 1789 Doing Homework again

    Doing Homework again

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 10008    Accepted Submission(s): 5854


    Problem Description
    Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Every teacher gives him a deadline of handing in the homework. If Ignatius hands in the homework after the deadline, the teacher will reduce his score of the final test. And now we assume that doing everyone homework always takes one day. So Ignatius wants you to help him to arrange the order of doing homework to minimize the reduced score.
     
    Input
    The input contains several test cases. The first line of the input is a single integer T that is the number of test cases. T test cases follow.
    Each test case start with a positive integer N(1<=N<=1000) which indicate the number of homework.. Then 2 lines follow. The first line contains N integers that indicate the deadlines of the subjects, and the next line contains N integers that indicate the reduced scores.
     
    Output
    For each test case, you should output the smallest total reduced score, one line per test case.
     
    Sample Input
    3 3 3 3 3 10 5 1 3 1 3 1 6 2 3 7 1 4 6 4 2 4 3 3 2 1 7 6 5 4
     
    Sample Output
    0 3 5
     
    Author
    lcy
     
    Source
     
    Recommend
    lcy
     
     
    对于每个作业,先按照扣分从大到小排序,若分数相同则按照截止日期从小到大排序。
    然后按顺序,从截止日期开始往前找没有占用掉的时间。
    如果找不到了,则加到罚分里面。
     
     
     1 #include <cstdio>
     2 #include <cstring>
     3 #include <algorithm>
     4 using namespace std;
     5 
     6 const int MAX = 1050;
     7 struct Homework
     8 {
     9     int s;
    10     int d;
    11 };
    12 typedef Homework H;
    13 H h[MAX];
    14 bool u[MAX];
    15 bool compare(const H& h1, const H& h2)
    16 {
    17     if (h1.s>h2.s)
    18         return true;
    19     else if (h1.s == h2.s && h1.d<h2.d)
    20         return true;
    21     else
    22         return false;
    23 }
    24 
    25 int solute(int n)
    26 {
    27     int j, score = 0;
    28     for (int i = 0; i < n; i++)
    29     {
    30         for (j = h[i].d; j > 0; j--)
    31         {
    32             if (!u[j])
    33             {
    34                 u[j] = true;
    35                 break;
    36             }
    37         }
    38         if (j == 0)
    39             score += h[i].s;
    40     }
    41     return score;
    42 }
    43 int main()
    44 {
    45     int t, n, pos;
    46     scanf("%d", &t);
    47     while (t--)
    48     {
    49         scanf("%d", &n);
    50         memset(u, 0, sizeof(u));
    51         for (int i = 0; i < n; i++)
    52             scanf("%d", &h[i].d);
    53 
    54         for (int i = 0; i<n; i++)
    55             scanf("%d", &h[i].s);
    56 
    57         sort(h, h + n, compare);
    58 
    59         printf("%d
    ", solute(n));
    60     }
    61 
    62 }
     
     
  • 相关阅读:
    软件工程概论---二维最大子数组和
    电梯调度之需求分析
    梦断代码读书笔记(一)
    软件工程概论---max单元测试
    软件工程概论---最大子数组的和延伸
    软件工程概论第三周测验---最大子数组
    软件工程概论第二周综合测验
    软件工程概论第二周综合测验----设计思路
    2015年上学期读书计划
    关于阅读构建之法提出的问题
  • 原文地址:https://www.cnblogs.com/cumulonimbus/p/5158731.html
Copyright © 2011-2022 走看看