zoukankan      html  css  js  c++  java
  • PAT 1081 Rational Sum

    1081 Rational Sum (20 分)
     

    Given N rational numbers in the form numerator/denominator, you are supposed to calculate their sum.

    Input Specification:

    Each input file contains one test case. Each case starts with a positive integer N (≤), followed in the next line N rational numbers a1/b1 a2/b2 ... where all the numerators and denominators are in the range of long int. If there is a negative number, then the sign must appear in front of the numerator.

    Output Specification:

    For each test case, output the sum in the simplest form integer numerator/denominator where integer is the integer part of the sum, numerator <denominator, and the numerator and the denominator have no common factor. You must output only the fractional part if the integer part is 0.

    Sample Input 1:

    5
    2/5 4/15 1/30 -2/60 8/3
    

    Sample Output 1:

    3 1/3
    

    Sample Input 2:

    2
    4/3 2/3
    

    Sample Output 2:

    2
    

    Sample Input 3:

    3
    1/3 -1/6 1/8
    

    Sample Output 3:

    7/24


    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    
    
    //  a/a1 + b/b1
    
    
    ll to_int(string s){
        ll sum = 0; bool flag = 1;
        if(s[0] == '-'){
            flag = 0;
            s = s.substr(1,s.size()-1);
        }
        for(int i=0;i < s.size();i++){
            sum = sum*10 + (s[i]-'0');
        }
        if(flag) return sum;
        else return -sum;
    }
    
    ll gcd(ll x,ll y){
        return y?gcd(y,x%y):x;
    }
    
    
    
    
    //  a/a1 + b/b1
    
    int main(){
        int t;cin >> t;
        ll a = 0,a1 = 1;
    
        while(t--){
            string s; cin >> s;
            int pos = s.find('/');
            string stra = s.substr(0,pos);
            string stra1 = s.substr(pos+1,s.size()-pos);
            ll b = to_int(stra);
            ll b1 = to_int(stra1);
    
            ll c = a*b1 + b*a1;
            ll c1 = a1*b1;
    
            ll t = gcd(c,c1);
    
            a = c/t;
            a1 = c1/t;
        }
    
        ll x = a/a1;
        ll y = a%a1;
    
        if(x&&y){printf("%lld %lld/%lld",x,y,a1);}
        else if(!x&&y){printf("%lld/%lld",y,a1);}
        else if(x&&!y)printf("%lld",x);
        else printf("0");
    
        return 0;
    }

    ——一开始把输出写错了。。

  • 相关阅读:
    算法导论9.33
    第6章 堆排序
    算法导论9.36算法导论9.36 .
    算法导论83排序不同长度的数据项
    算法导论76对区间的模糊排序
    第8章 线性时间排序
    在bochs上运行的第一个操作系统
    算法导论6.58堆排序K路合并
    js中的preventDefault与stopPropagation详解(转)
    JS基础RegExp
  • 原文地址:https://www.cnblogs.com/cunyusup/p/10780760.html
Copyright © 2011-2022 走看看