zoukankan      html  css  js  c++  java
  • PAT 1122 Hamiltonian Cycle

    1122 Hamiltonian Cycle (25 分)
     

    The "Hamilton cycle problem" is to find a simple cycle that contains every vertex in a graph. Such a cycle is called a "Hamiltonian cycle".

    In this problem, you are supposed to tell if a given cycle is a Hamiltonian cycle.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains 2 positive integers N (2), the number of vertices, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format Vertex1 Vertex2, where the vertices are numbered from 1 to N. The next line gives a positive integer K which is the number of queries, followed by K lines of queries, each in the format:

    V1​​ V2​​ ... Vn​​

    where n is the number of vertices in the list, and Vi​​'s are the vertices on a path.

    Output Specification:

    For each query, print in a line YES if the path does form a Hamiltonian cycle, or NO if not.

    Sample Input:

    6 10
    6 2
    3 4
    1 5
    2 5
    3 1
    4 1
    1 6
    6 3
    1 2
    4 5
    6
    7 5 1 4 3 6 2 5
    6 5 1 4 3 6 2
    9 6 2 1 6 3 4 5 2 6
    4 1 2 5 1
    7 6 1 3 4 5 2 6
    7 6 1 2 5 4 3 1
    

    Sample Output:

    YES
    NO
    NO
    NO
    YES
    NO

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    #define MAXN 500
    
    int n,m;
    int G[MAXN][MAXN] = {0};
    
    
    
    
    
    int main(){
        cin >> n >> m;
        for(int i=0;i < m;i++){
            int x,y; cin >> x >> y;
            G[x][y] = G[y][x] = 1;
        }
    
        int K;
        cin >> K;
        while(K--){
            int nnn; cin >> nnn;
            vector<int> temp;
            set<int> st;
            for(int i=0;i < nnn;i++){
                int num;cin >> num;
                temp.push_back(num);
                st.insert(num);
            }
            int flag1=1;
            int flag2=1;
            if(st.size()!=n||nnn-1!=n||temp[0]!=temp[nnn-1]) flag1=0;
    
            for(int i=1;i < temp.size();i++){
                if(!G[temp[i-1]][temp[i]])flag2=0;
            }
            if(flag1&&flag2) cout << "YES" << endl;
            else cout << "NO" << endl;
    
        }
    
    
    
    
        return 0;
    }

    看了答案才知道这么简单,一开始理解错了题意,后来才发现他给的就是路径,难度就降低了

    分析:1.设置falg1 判断节点是否多走、少走、或走成环
    2.设置flag2 判断这条路能不能走通
    3.当falg1、flag2都为1时是哈密尔顿路径,否则不是

  • 相关阅读:
    duilib基本框架
    字典树(Trie Tree)
    如何用java有选择的输入多行文本
    java 接口默认修饰符
    3org.springframework.beans.factory.BeanDefinitionStoreException异常
    mybatis
    大O表示法
    sql in interview for a job
    static
    StringBuffer 和 StringBuilder
  • 原文地址:https://www.cnblogs.com/cunyusup/p/10808734.html
Copyright © 2011-2022 走看看