import tensorflow as tf #创建常量op m1 = tf.constant([[3,3]]) m2 = tf.constant([[2],[3]]) #创建一个矩阵乘法op,m1,m2传入 product = tf.matmul(m1,m2) #定义一个会话,启动默认图 sess = tf.Session() #调用sess的run方法来执行乘法op #run(product)触发了图中3个op result = sess.run(product) print(result) sess.close()
——
import tensorflow as tf x = tf.Variable([1,2]) a = tf.constant([3,3]) #增加一个减法op sub = tf.subtract(x,a) #增加一个加法op add = tf.add(x,sub) #定义全局变量 init = tf.global_variables_initializer() with tf.Session() as sess:#用with打开无需关掉 sess.run(init) print(sess.run(sub)) print(sess.run(add))
——
import tensorflow as tf #创建一个变量初始化为0 state = tf.Variable(0,name='counter') #创建一个op,作用是state加1 new_val = tf.add(state,1) #赋值op,把new_val赋值给state update = tf.assign(state,new_val) #变量初始化 init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) print(sess.run(state)) for _ in range(5): sess.run(update)#每次调用更新变量的操作 print(sess.run(state))
输出结果:0,1,2,3,4,5
——
import tensorflow as tf input1 = tf.constant(3.0) input2 = tf.constant(2.0) input3 = tf.constant(5.0) add = tf.add(input2,input3) mul = tf.multiply(input1,add) with tf.Session() as sess: result = sess.run([mul,add]) #fetch可以同时运行多个op print(result)
输出结果:[21.0, 7.0]
——
import tensorflow as tf input1 = tf.placeholder(tf.float32) input2 = tf.placeholder(tf.float32) output = tf.multiply(input1,input2) with tf.Session() as sess: #feed 占位符,以字典形式传入 print(sess.run(output,feed_dict={input1:[8.],input2:[2.]}))
——
import tensorflow as tf import numpy as np #使用numpy生成100个随机点 x_data = np.random.rand(100) y_data = x_data*0.1 + 0.2 #构造一个线性模型 b = tf.Variable(0.) k = tf.Variable(0.) y = k*x_data + b #二次代价函数 平均值 误差 loss = tf.reduce_mean(tf.square(y_data - y)) #定义一个梯度下降法来进行训练的优化器 optimizer = tf.train.GradientDescentOptimizer(0.2) #最小化代价函数 train = optimizer.minimize(loss) #初始化变量 init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for step in range(201): #经过200次训练 sess.run(train) if step%20 == 0: print(step,sess.run([k,b]))
利用tensorflow多次训练接近初始值
输出结果:
0 [0.051719286, 0.099555954]
20 [0.10192502, 0.19899791]
40 [0.10117736, 0.19938719]
60 [0.10072004, 0.19962522]
80 [0.10044037, 0.19977079]
100 [0.10026933, 0.19985981]
120 [0.10016473, 0.19991426]
140 [0.10010075, 0.19994757]
160 [0.10006161, 0.19996794]
180 [0.10003767, 0.19998039]
200 [0.10002304, 0.19998801]
可以看到最后结果无限接近于0.1 , 0.2
——