zoukankan      html  css  js  c++  java
  • 动态规划-----------01背包,完全背包与多重背包

    P01: 01背包问题

    题目

    有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

    基本思路

    这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

    用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

    f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

    有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

    优化空间复杂度

    以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。

    先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。(后面有详细的图解)伪代码如下:

    for i=1..N

        for v=V..0

            f[v]=max{f[v],f[v-c[i]]+w[i]};

    其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。

    过程ZeroOnePack,表示处理一件01背包中的物品,两个参数cost、weight分别表明这件物品的费用和价值。

    procedure ZeroOnePack(cost,weight)

        for v=V..cost

            f[v]=max{f[v],f[v-cost]+weight}

    注意这个过程里的处理与前面给出的伪代码有所不同。前面的示例程序写成v=V..0是为了在程序中体现每个状态都按照方程求解了,避免不必要的思维复杂度。而这里既然已经抽象成看作黑箱的过程了,就可以加入优化。费用为cost的物品不会影响状态f[0..cost-1],这是显然的。

    有了这个过程以后,01背包问题的伪代码就可以这样写:

    for i=1..N

        ZeroOnePack(c[i],w[i]);

    初始化的细节问题

    我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。

    如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。

    如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0

    为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。

    这个小技巧完全可以推广到其它类型的背包问题,后面也就不再对进行状态转移之前的初始化进行讲解。

    小结

    01背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,另外,别的类型的背包问题往往也可以转换成01背包问题求解。故一定要仔细体会上面基本思路的得出方法,状态转移方程的意义,以及最后怎样优化的空间复杂度。

    二维数组代码的写法

     1 #include<bits/stdc++.h>  
     2 using namespace std;  
     3 int dp[1005][1005];  
     4 int weight[1005];  
     5 int value[1005];  
     6 int main()  
     7 {  
     8     int n,m;  
     9     cin>>m>>n;  
    10     memset(dp,0,sizeof(dp));//数组清空,其实同时就把边界给做了清理  
    11     for(int i=1; i<=n; i++)  
    12         cin>>weight[i]>>value[i];  
    13     //从1开始有讲究的因为涉及到dp[i-1][j],从0开始会越界  
    14     for(int i=1; i<=n; i++)//判断每个物品能否放进  
    15     {  
    16         for(int j=0; j<=m; j++)//对每个状态进行判断  
    17         //这边两重for都可以倒着写,只是需要处理最边界的情况,滚动数组不一样  
    18         {  
    19             if(j>=weight[i])//能放进  
    20                 dp[i][j]=max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i]);  
    21   
    22             else dp[i][j]=dp[i-1][j];//不能放进  
    23         }  
    24     }  
    25     cout<<dp[n][m]<<endl;  
    26     return 0;  
    27 }  

    这个数组开销还是很大的,因为是二维的,万一哪个数据一大,分分钟内存超限,所以我们要进行优化。

    3、空间优化

      空间优化,每一次V(i)(j)改变的值只与V(i-1)(x) {x:1...j}有关,V(i-1)(x)是前一次i循环保存下来的值;

      因此,可以将V缩减成一维数组,从而达到优化空间的目的,状态转移方程转换为 B(j)= max{B(j), B(j-w(i))+v(i)}

      并且,状态转移方程,每一次推导V(i)(j)是通过V(i-1)(j-w(i))来推导的,所以一维数组中j的扫描顺序应该从大到小(capacity到0),否者前一次循环保存下来的值将会被修改,从而造成错误。

     

       同样以上述例子中i=3时来说明,有:

        1) i=3,j=8,w(3)=4,v(3)=5,有j>w(3),则B(8)=max{B(8),B(8-w(3))+v(3)}=max{B(8),B(4)+5}=max{7,4+5}=9;

        2) j- -即j=7,有j>w(3),则B(7)=max{B(7),B(7-w(3))+v(3)}=max{B(7),B(3)+5}=max{7,4+5}=9;

        3) j- -即j=6,有j>w(3),则B(6)=max{B(6),B(6-w(3))+v(3)}=max{B(6),B(2)+5}=max{7,3+5}=8;

        4) j- -即j=5,有j>w(3),则B(5)=max{B(5),B(5-w(3))+v(3)}=max{B(5),B(1)+5}=max{7,0+5}=7;

        5) j- -即j=4,有j=w(3),则B(4)=max{B(4),B(4-w(3))+v(3)}=max{B(4),B(0)+5}=max{4,0+5}=5;

        6) j- -即j=3,有j<w(3),继续访问数组会出现越界,所以本轮操作停止,B(0)到B(3)的值保留上轮循环(i=2时)的值不变,进入下一轮循环i++;

     

      如果j不逆序而采用正序j=0...capacity,如上图所示,当j=8时应该有B(8)=B(8-w(3))+v(3)=B(4)+5,然而此时的B(4)已经在j=4的时候被修改过了,原来的B(4)=4,现在B(4)=5,所以计算得出B(8)=5+5=10,显然这于正确答案不符合;所以该一维数组后面的值需要前面的值进行运算再改动,如果正序便利,则前面的值将有可能被修改掉从而造成后面数据的错误;相反如果逆序遍历,先修改后面的数据再修改前面的数据,此种情况就不会出错了;

    这里用到的一维数组就是传说中的---------------滚动数组!!!

    什么是滚动数组。

    说白了二维数组只是把每个物品都跑一遍,然后到最后一个物品的时候输出答案,那么过程值只是计算的时候用一次,我没必要存下来。所以用一个数组去滚动存储,然后用后一个状态的值去覆盖前面一个状态。然后形象的叫它:滚动数组

    用滚动数组求01背包的最重要的一点就是:第二层循环要逆序!!!如上图图解,代码如下:

     1 #include<bits/stdc++.h>  
     2 using namespace std;  
     3 int dp[1005];//滚动数组的写法,省下空间省不去时间  
     4 int weight[1005];  
     5 int value[1005];  
     6 int main()  
     7 {  
     8     int n,m;  
     9     cin>>m>>n;  
    10     memset(dp,0,sizeof(dp));  
    11     for(int i=1; i<=n; i++)  
    12         cin>>weight[i]>>value[i];  
    13     for(int i=1; i<=n; i++)//对每个数判断,可反  
    14     {  
    15         for(int j=m; j>=weight[i]; j--)//这里这个循环定死,不能反,反了就是完全背包  
    16         {  
    17             dp[j]=max(dp[j],dp[j-weight[i]]+value[i]);//其实不断在判断最优解,一层一层的  
    18         }  
    19     }  
    20     cout<<dp[m]<<endl;  
    21     return 0;  
    22 }  

    P02: 完全背包问题

    题目 有N种物品和一个容量为V的背包。第i种物品有若干件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

    基本思路:

     这个问题和我们刚解决的01背包问题很像,不同的是该问题中的物品每一件有若干件,而01背包中的每一件物品只有一件.

      其中F[i-1][j-K*C[i]]+K*W[i]表示前i-1物品中选取若干件物品放入剩余空间为j-K*C[i]的背包中所能得到的最大价值加上k件第i物品;

           设物品种数为N,背包容量为V,第i物品体积为C[i],第i物品价值为W[i]。

           与01背包相同,完全背包也需要求出NV个状态F[i][j]。但是完全背包求F[i][j]时需要对k分别取0,…,j/C[i]求最大F[i][j]值,耗时为j/C[i]。那么总的时间复杂度为O(NV∑(j/C[i])),代码如下:

     1 #include<bits/stdc++.h>  
     2 using namespace std;   
     3 const int maxn=555;  
     4 int dp[maxn][111111];  
     5 int need[maxn],value[maxn];  
     6 int n,m;  
     7 int main()  
     8 {  
     9     int i,j,k;  
    10     while(~scanf("%d %d",&n,&m))  
    11     {  
    12         memset(dp,0,sizeof(dp));  
    13         for(i=1;i<=n;i++)  
    14             scanf("%d %d",&need[i],&value[i]);   
    15         for(i=1;i<=n;i++)  
    16         {  
    17             for(j=0;j<=m;j++)  
    18             {  
    19                 for(k=0;k*need[i]<=j;k++)      
    20                     dp[i][j]=max(dp[i][j],dp[i-1][j-k*need[i]]+k*value[i]);  
    21             }  
    22         }  
    23         printf("%d
    ",dp[n][m]);  
    24     }  
    25     return 0;  
    26 }  

    优化空间复杂度为O(V)

            和01背包问题一样,完全背包也可以用一维数组来保存数据。算法样式和01背包的很相似,唯一不同的是对V遍历时变为正序,而01背包为逆序

    01背包中逆序是因为F[i][]只和F[i-1][]有关,且第i的物品加入不会对F[i-1][]状态造成影响。而完全背包则考虑的是第i物品的出现的问题,

    第i种物品一旦出现它势必应该对第i种物品还没出现的各状态造成影响。也就是说,原来没有第i种物品的情况下可能有一个最优解,现在第i种物品

    出现了,而它的加入有可能得到更优解,所以之前的状态需要进行改变,故需要正序。优化后的代码为:

     1 [cpp] view plain copy
     2 #include<bits/stdc++.h>  
     3 using namespace std;   
     4 const int maxn=555;  
     5 int dp[111111];  
     6 int need[maxn],value[maxn];  
     7 int n,m;  
     8 int main()  
     9 {  
    10     int i,j,k;  
    11     while(~scanf("%d %d",&n,&m))  
    12     {  
    13         memset(dp,0,sizeof(dp));  
    14         for(i=1;i<=n;i++)  
    15             scanf("%d %d",&need[i],&value[i]);   
    16         for(i=1;i<=n;i++)  
    17         {  
    18             for(j=need[i];j<=m;j++)  
    19             {  
    20                 if(j>=need[i])  
    21                   dp[j]=max(dp[j],dp[j-need[i]]+value[i]);  
    22                 }  
    23         }  
    24         printf("%d
    ",dp[m]);  
    25     }  
    26     return 0;  
    27 }  

    两者区别:

    1.01背包:有n种物品与承重为m的背包。每种物品只有一件,每个物品都有对应的重量weight[i]与价值value[i],求解如何装包使得价值最大。

    2.完全背包:有n种物品与承重为m的背包。每种物品有无限多件,每个物品都有对应的重量weight[i]与价值value[i],求解如何装包使得价值最大。

    P03: 多重背包问题

    题目

    有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

    基本算法

    这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有n[i]+1种策略:取0件,取1件……取n[i]件。令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值,则有状态转移方程:

    f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k<=n[i]}

    复杂度是O(V*Σn[i])。用完全背包思想实现的代码如下:

     1 #include<bits/stdc++.h>  
     2 using namespace std;  
     3 const int N = 1005;  
     4   
     5 int dp[N];  
     6 int c[N],w[N],num[N];  
     7 int n,m;  
     8   
     9 void ZeroOne_Pack(int cost,int weight,int n)//吧01背包封装成函数  
    10 {  
    11     for(int i=n; i>=cost; i--)  
    12         dp[i] = max(dp[i],dp[i-cost] + weight);  
    13 }  
    14   
    15 void Complete_Pack(int cost,int weight,int n)//把完全背包封装成函数  
    16 {  
    17     for(int i=cost; i<=n; i++)  
    18         dp[i] = max(dp[i],dp[i-cost] + weight);  
    19 }  
    20   
    21 int Multi_Pack(int c[],int w[],int num[],int n,int m)//多重背包  
    22 {  
    23     memset(dp,0,sizeof(dp));  
    24     for(int i=1; i<=n; i++)//遍历每种物品  
    25     {  
    26         if(num[i]*c[i] > m)  
    27             Complete_Pack(c[i],w[i],m);  
    28             //如果全装进去已经超了重量,相当于这个物品就是无限的  
    29             //因为是取不光的。那么就用完全背包去套  
    30         else  
    31         {  
    32             int k = 1;  
    33             //取得光的话,去遍历每种取法  
    34             //这里用到是二进制思想,降低了复杂度  
    35             //为什么呢,因为他取的1,2,4,8...与余数个该物品,打包成一个大型的该物品  
    36             //这样足够凑出了从0-k个该物品取法  
    37             //把复杂度从k变成了logk  
    38             //如k=11,则有1,2,4,4,足够凑出0-11个该物品的取法  
    39             while(k < num[i])  
    40             {  
    41                 ZeroOne_Pack(k*c[i],k*w[i],m);  
    42                 num[i] -= k;  
    43                 k <<= 1;  
    44             }  
    45             ZeroOne_Pack(num[i]*c[i],num[i]*w[i],m);  
    46         }  
    47     }  
    48     return dp[m];  
    49 }  
    50   
    51 int main()  
    52 {  
    53     int t;  
    54     cin>>t;  
    55     while(t--)  
    56     {  
    57         cin>>m>>n;  
    58         for(int i=1; i<=n; i++)  
    59             cin>>c[i]>>w[i]>>num[i];  
    60         cout<<Multi_Pack(c,w,num,n,m)<<endl;  
    61     }  
    62     return 0;  
    63 }  

    另一种好想好写的基本方法是转化为01背包求解:把第i种物品换成n[i]件01背包中的物品,则得到了物品数为Σn[i]的01背包问题,直接求解,复杂度仍然是O(V*Σn[i])。

    首先这种可以把物品拆开,把相同的num[i]件物品 看成 价值跟重量相同的num[i]件不同的物品,那么!!是不是就转化成了一个规模稍微大一点的01背包了。对不对?

     1 #include<bits/stdc++.h>  
     2 using namespace std;  
     3 int dp[1005];  
     4 int weight[1005],value[1005],num[1005];  
     5 int main()  
     6 {  
     7     int n,m;  
     8     cin>>n>>m;  
     9     memset(dp,0,sizeof(dp));  
    10     for(int i=1; i<=n; i++)  
    11         cin>>weight[i]>>value[i]>>num[i];  
    12           
    13     for(int i=1; i<=n; i++)//每种物品  
    14           
    15         for(int k=0; k<num[i]; k++)//其实就是把这类物品展开,调用num[i]次01背包代码  
    16           
    17             for(int j=m; j>=weight[i]; j--)//正常的01背包代码  
    18               
    19                 dp[j]=max(dp[j],dp[j-weight[i]]+value[i]);  
    20       
    21     cout<<dp[m]<<endl;  
    22     return 0;  
    23 }  

    但是我们期望将它转化为01背包问题之后能够像完全背包一样降低复杂度。仍然考虑二进制的思想,我们考虑把第i种物品换成若干件物品,使得原问题中第i种物品可取的每种策略——取0..n[i]件——均能等价于取若干件代换以后的物品。另外,取超过n[i]件的策略必不能出现。

    方法是:将第i种物品分成若干件物品,其中每件物品有一个系数,这件物品的费用和价值均是原来的费用和价值乘以这个系数。使这些系数分别为1,2,4,...,2^(k-1),n[i]-2^k+1,且k是满足n[i]-2^k+1>0的最大整数。例如,如果n[i]为13,就将这种物品分成系数分别为1,2,4,6的四件物品。

    分成的这几件物品的系数和为n[i],表明不可能取多于n[i]件的第i种物品。另外这种方法也能保证对于0..n[i]间的每一个整数,均可以用若干个系数的和表示,这个证明可以分0..2^k-1和2^k..n[i]两段来分别讨论得出,并不难,希望你自己思考尝试一下。

    这样就将第i种物品分成了O(log n[i])种物品,将原问题转化为了复杂度为O(V*Σlog n[i])的01背包问题,是很大的改进。

    下面给出O(log amount)时间处理一件多重背包中物品的过程,其中amount表示物品的数量:

    procedure MultiplePack(cost,weight,amount)

        if cost*amount>=V

            CompletePack(cost,weight)

            return

        integer k=1

        while k<num

            ZeroOnePack(k*cost,k*weight)

            amount=amount-k

            k=k*2

        ZeroOnePack(amount*cost,amount*weight)

    希望你仔细体会这个伪代码,如果不太理解的话,不妨翻译成程序代码以后,单步执行几次,或者头脑加纸笔模拟一下,也许就会慢慢理解了。

    参考资料:

    http://blog.csdn.net/stack_queue/article/details/53544109(背包九讲)

    https://www.cnblogs.com/Christal-R/p/Dynamic_programming.html

    http://blog.csdn.net/tinyguyyy/article/details/51203935

    http://blog.csdn.net/howardemily/article/details/55223039

    http://blog.csdn.net/aaakirito/article/details/54096907#

    http://blog.csdn.net/carol123456/article/details/52155142

  • 相关阅读:
    异常处理
    添加headers头文件反爬虫
    爬百思不得姐的视频(爬多页时for的循环)
    图片爬取百思不得姐(正则的取法,下载的方法,%s的用法)
    创建一个网页
    集合幂级数总结
    题解(新)
    JOI汉堡肉
    NOIO 2020 r2 总结
    长链剖分
  • 原文地址:https://www.cnblogs.com/curo0119/p/8329335.html
Copyright © 2011-2022 走看看